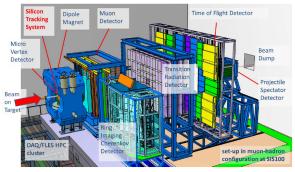
The Silicon Tracking System of the **CBM** experiment at FAIR

Maksym TEKLISHYN^{1,2} for the CBM Collaboration

¹Facility for Antiproton and Ion Research (Darmstadt, Germany), ²Kyiv Institute for Nuclear Research (Ukraine)

CBM experiment at FAIR


Physics aim: QCD phase diagram

at high net baryon densities and moderate temperatures

- Starting with SIS100 energies:
 - $2 11 \text{ GeV} A (\sqrt{s_{NN}} = 2.7 4.9 \text{ GeV})$

Observables:

- Hadrons, electrons, muons, photons
- Particle yields and multi-differential cross-sections
- Rare diagnostic probes: strange mesons, light vector mesons (ρ, ω, φ), charm production

Recent publication: Challenges in QCD matter physics - The scientific programme of the CBM experiment at FAIR; arXiv:1607.01487v2 [nucl-ex] 24 Nov 2016

Silicon Tracking System

- ▶ Silicon Tracking System (STS) is a core CBM¹ detector
- 8 tracking stations
 - $\blacktriangleright~30\,\mathrm{cm}$ downstream the target
 - about $3.0 \times 1.0 \times 1.4 \,\mathrm{m}^3$ large
 - material budget $0.3 1.0\% X_0$ per station
- Operation conditions:
 - ▶ inside 1 Tm dipole magnet
 - thermal enclosure, operation temperature $-7^{\circ}\!\mathrm{C}$
 - \blacktriangleright lifetime dose in the innermost regions $\simeq 1 \times 10^{14}\,{}_{1\,\rm MeV}\,n_{\rm eq}$
- Expected performance:
 - single-point resolution $\Delta x \leqslant 20 \, \mu {
 m m}$
 - hit reconstruction efficiency $\ge 98\%$
 - momentum resolution $\Delta p/p \approx 1.5\%$

¹Claudia Höhne, CBM@FAIR (Saturday 11:25)

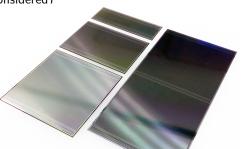
Technical challenges

Requirements from the physics program:

- Studies of the rare probes
 - ▶ low cross-sections \rightarrow high interaction rates (up to $10 \,\mathrm{MHz}$)
- Low momentum particles (> $0.5 \, \text{GeV}/c$)
 - multiple scattering is important

Consequences for the detector:

- Fast self-triggering r/o electronics, no hardware trigger
- Double-sided double-metal thin silicon sensors
 - all strips read-out from one edge
 - smaller amount of material
- Read-out via the long micro-cables:
 - \blacktriangleright variable length from $11\,\mathrm{cm}$ to $51\,\mathrm{cm}$
 - electronics outside the acceptance: material \searrow , rad. dose \searrow


Fast, large, precise and light solid-state detector

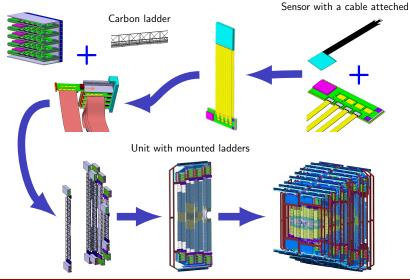
Silicon microstrip sensors

- Double sided n-type silicon sensors (XY positioning)
 - n-side 1024 straight strips
 - p-side 1024 strips turned by 7.5° to the edge
 - + second metallisation layer to interconnect short strips
- Various form factors (≈ 300 of each $\ge 42 \text{ mm}$):
 - ▶ 22 × 62 mm², 42 × 62 mm², 62 × 62 mm², 124 × 62 mm² and few narrow sensors around the beam-pipe
- Thickness $300 \,\mu \mathrm{m} \pm 15 \,\mu \mathrm{m}$

(alternative thickness is being considered)

- \blacktriangleright Pitch size $58\,\mu m$ on the both
- In-build AC coupling to the r/o
- Survive non-ionising dose $10^{14} \, 1 \, \mathrm{MeV} \, n_{eq}$
- ► Full depletion voltage 60 - 80 V

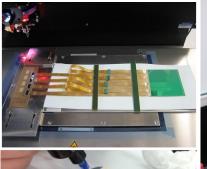
Mechanical setup

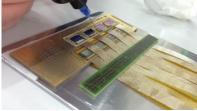


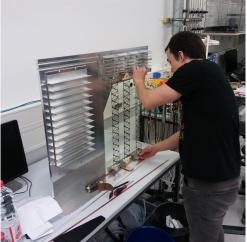
- Tracker is organised in 8 tracking stations
 - each station has an individual layout
 - \blacktriangleright stations separated by $\approx 10\,{\rm cm}$
 - two aluminium C-frames per station
 - front-end electronics on top and bottom
 - ▶ bi-phase CO_2 cooling down to $-40^{\circ}C$
- Sensors are mounted on the light-weight carbon ladders
- Read-out electronics attached with aluminium-polyamide micro-cables (copper is considered as an alternative)
 - ▶ 64 channels connected with 1 cable
 - ▶ 128 channels per one ASIC (odd + even)
 - 32 micro-cables per sensor

Dedicated procedures, techniques and tools must be developed and manufactured

	System integration		

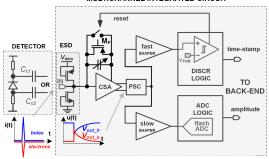

System integration




	System integration		

Prototyping

Dummy module assembling:


 mounting carbon ladders on the half-c-frame prototype

The Silicon Tracking System of the CBM experiment at FAIR

STS-XYTER ASIC

STS data acquisition involves dedicated analog silicon integrated circuit

- 128 channels per chip, 16 chips per micro-strip sensor
- 5-bit flash ADC for each channel
- time resolution $\leq 5 \, \mathrm{ns}$

MULTICHANNEL INTEGRATED CIRCUIT

STS-XYTERv2.0 under test

Quality Assurance scheme

$>1000~{\rm sensors}, >32000~{\rm micro-cables:}$ to be tested on each stage of the integration

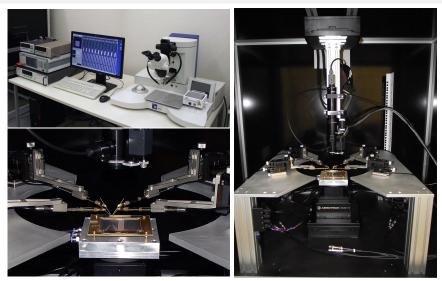

 $\label{eq:production stage: 100\% of sensors tested at Quality Assurance Centers \\ Production stage: 5–10\% + suspicious ones from optical inspection \\ \end{array}$

- \blacktriangleright 1% of sensors to be characterised in-depth
 - (verify QA by vendors)
- ► QA centres:
 - GSI, Darmstadt
 - electrical tests
 - tests with radiation source (sensor R&D, module tests)
 - tests with infrared laser (sensor R&D, module test)
 - University of Tübingen
 - electrical tests
 - optical inspection
 - JINR, Dubna
 - electrical tests

Butches of sensors to be split between centres during mass production

Electrical tests

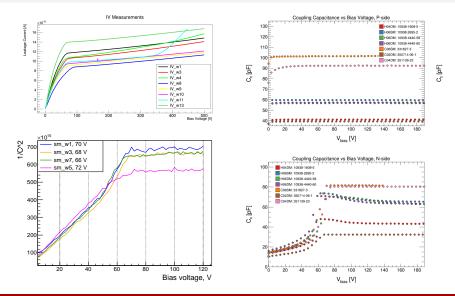
needle probe station @ GSI



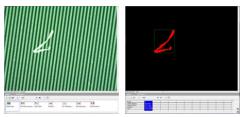
- Süss PA300PS probe station
 - ▶ 1 μm precision in X-Y-Z directions
 - chuck rotation (covers $\pm 7.5^{\circ}$)
 - temperature and humidity control
 - \blacktriangleright needles with $5~\mu m$ tips

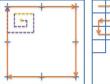
- ► Keithley 2410 SourceMeter V < ±1100 V, ΔI = 10 pA</p>
- Keithley 6487
 picoammeter/voltage
 source, I = 2 nA 20 mA,
 V = 505 V
- ▶ QuadTech 7600 precision LCR-meter V_{bias} = 500 V, f = (10⁻⁴ - 2) MHz, 0.05% accuracy
- ► Keithley 708B 8×12 switching matrix ≥ 1100 V
- LabView based software:
 - pinhole
 - strip current
 - coupling capacitance...

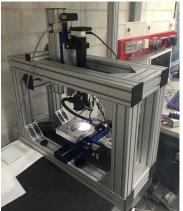
Electrical tests


custom-made probe station in Tübingen University

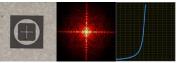
The Silicon Tracking System of the CBM experiment at FAIR

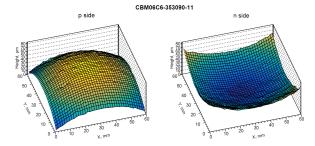

		QA	


Examples of the electrical tests


Optical inspection setup

- Different objects can be studied (sensors in all sizes, micro-cables)
- Possible to detect:
 - dust particles and other foreign objects on the surface
 - scratches
 - single element integrity
 - bias resistors
 - strips, connection pads
 - guard ring
 - sensor edge defects & parallelity





Measurement of the sensor warp

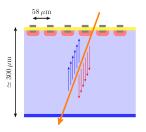
- Contactless method
- Sensor surface curvature can be studied
- Procedure:
 - photos with different focusing distances
 - Fourier transformation
 - fitting with the Cauchy distribution
- Precision $\Delta z < 1 \, \mu \mathrm{m}$

Laboratory tests

with radioactive sources

Charge collection efficiency $\varepsilon_Q = Q_{\rm registered}/Q_{\rm induced}$

- Electron-hole pairs to be created in sensitive volume
 - ▶ infrared laser (Si is transparent for 1060 nm wavelength)
 - cosmic muons (MIPs in good approach but rare)
 - β electrons from Sc-90 isotope
 - high statistics
 - MIPs at $E_{kin} \ge 1.5 \,\mathrm{MeV}$
- ▶ Obey Landau-Vavilov distribution: $\Delta_p = 23 \pm 1 \text{ ke}^-$ for $300 \, \mu \text{m}$ of Si
- Radioactive source setup:


(non-)irradiated sensor in supporting PCB r/o electronics

plastic scintillator + PMT for triggering cooling system + thermal enclosure

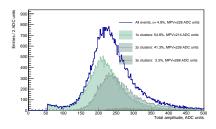
 $(T \simeq -10^{\circ} \text{C})$

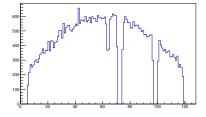
Detection efficiency $\varepsilon_{det} = N_{registered}/N_{passed}$

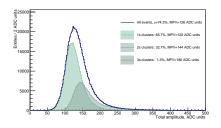
Require tracking or reference detector

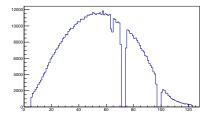
PCB design + customised electronics

- Support PCB was designed to fit r/o electronics
 - ▶ 2×64 channels $+2 \times 4$ ground pins - 2 ERNI connectors
 - $140 \times 140 \times 1 \,\mathrm{mm}^3$ two sided PCBs
 - ▶ 3 layouts: 2, 4, 6 cm wide hole
 - on-board RC-LC filter
 - both p and n sides r/o from top-side
- Customised Alibava front-end board:
 - \blacktriangleright fan-out with 2×64 channels is attached






Amplitude spectra & hit maps


n-side, $62 \times 62 \,\mathrm{mm}^2$ sensor

p-side, $62 \times 62 \,\mathrm{mm^2}$ sensor

Alternative connection schemes

- Geometrical effects on the S/N ratio
 - $S/N \propto 1/\sqrt{n_{\rm strips}}$, where $n_{\rm strips}$ is a cluster size
 - cluster size depending on angle (neglecting cross-talk):

•
$$0^{\circ} \leq \theta \leq 11^{\circ}$$
, $n_{\text{strips}} \leq 2$

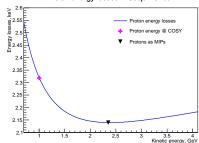
►
$$11^{\circ} < \theta \leq 21^{\circ}$$
, $2 \leq n_{\text{strips}} \leq 3$

►
$$\theta \ge 21^\circ$$
, $n_{\text{strips}} \ge 3$

- S/N deteriorates by factor of $\sqrt{3}..\sqrt{4}$ for peripheral ladders
- Geometrical solution: (effectively) increasing strip width
 - change sensor mask pattern (cost and time consuming)
 - introduce alternative connection schemes to r/o electronics:
 - two strips to one r/o channel, $2 \rightarrow 1$
 - every second strip omitted, $2 \rightarrow 0$

Motivation for the beam tests

- ▶ Relativistic protons (close to the real experiment conditions) monochromatic: predictable $\Delta E/\Delta x$ low momentum spread: good for angular studies
- COSY proton synchrotron in Jülich, Germany

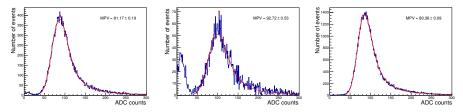

[R. Maier, NIM Volume 390, Issues 1-2, 1 May 1997, Pages 1-8, ISSN 0168-9002]

kinetic energy $E_k = 1 \text{ GeV} \pm 1\%$ in August 2016 crossing angle $\phi < 0.5^{\circ}$ (limited by station positioning precision)

 Studies of the charge collection efficiency

$$\blacktriangleright \quad \frac{\Delta E (1.7 \,\text{GeV}/c)}{\Delta E_{\text{MIP}}} = 1.08(4)$$

- Limited scattering in the material
- \blacktriangleright High statistic: up to $10^8/{\rm s}$


Proton energy losses in 300µm silicon

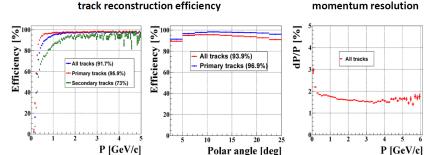
Beam tests @ COSY

Photo of the beam setup in Jessica cave; drawing of the thermal station

Preliminary charge spectra at zero angle for diff. connections $1 \rightarrow 1$, $2 \rightarrow 1$, $2 \rightarrow 0$:

Conclusions and outlook

- STS is actively developed by the wide international collaboration from Germany, Poland, Russia and Ukraine
- Tools and procedures for the installation of the components are in progress
- Dedicated STS-XYTER read out chip is being tested
- Various QA procedures are foreseen:
 - optical inspection
 - electrical tests
 - radioactive source setup and laser stand for modules
- ► Silicon sensors are tested for charge collection and detection efficiency
 - infrared laser stand (currently being developed)
 - radioactive source
 - proton beam @ COSY (Jülich, Germany)

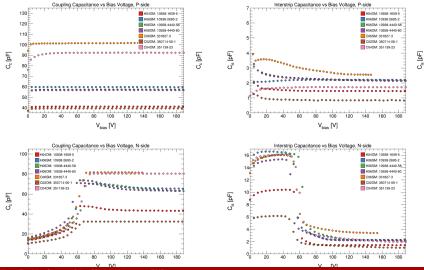

Construction of STS in 2018–2021

		Sensor tests

Back-up slides

STS tracking performance

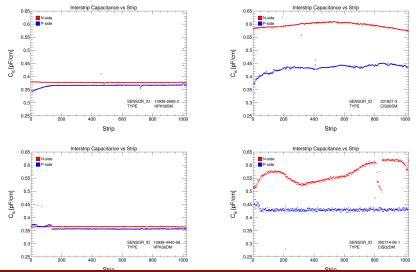
- · detailed, realistic detector model based on tested prototype components
- CbmRoot simulation framework
- using Cellular Automaton / Kalman Filter algorithms



momentum resolution

Sensor tests

Individual strip tests in Tübingen University


interstrip capacitance vs bias voltage

The Silicon Tracking System of the CBM experiment at FAIR

Individual strip tests in Tübingen University

interstrip capacitance per strip

The Silicon Tracking System of the CBM experiment at FAIR