

High rate time of flight system for FAIR-CBM

Wang Yi for CBM-TOF group

Department of Engineering Physics, Tsinghua University

International conference on technology and instrumentation in particle physics, May 22-26, Beijing

- Introduction on FAIR and CBM-TOF
- Structure of CBM-TOF
- **Development of low resistive glass**
- Design of strip-MRPC and pad-MRPC
- Beam test @GSI and SPS
- Conclusions

The phase diagram of strongly interacting matter

Wang Yi, Tsinghua University

Facility for Antiproton and Ion Research

Layout of CBM detector

The structure of CBM-TOF wall

CBM-ToF Requirements

- > Full system time resolution $\sigma_T \sim 80$ ps
- Efficiency > 95 %
- ➢ Rate capability ≤ 30 kHz/cm²
- Polar angular range 2.5° 25°
- > Occupancy < 5 %</p>
- Low power electronics
 - (~100.000 channels)
- Free streaming data acquisition

Electronics & Readout chain

Wang Yi, Tsinghua University

TOF electronics

GET4

FPGA - TDC

Precision between two channels PADI X & GET4 V1.23

The voltage drop in the gas gap:

$$\overline{V}_{drop} = V_{ap} - \overline{V}_{gap} = \overline{IR} = \overline{q}\phi\rho d$$

The smaller the voltage drop, the higher efficiency and higher rate capability!

Two main ways to improve rate capability:

- Reducing bulky resistivity of electrode glass (CBM)
- Reducing the avalanche charge (ATLAS)

Other methods:

- Reducing the thickness of glass
- Warming the detector

Development of low resistive glass

Performance of the glass

Maximal dimension	$32 \mathrm{cm} imes 30 \mathrm{cm}$
Bulk resistivity	$10^{10} \ \Omega \mathrm{cm}$
Standard thickness	$0.7, 1.1 \mathrm{mm}$
Thickness uniformity	$20~\mu{ m m}$
Surface roughness	$< 10 \mathrm{nm}$
Dielectric constant	7.5 - 9.5
DC measurement	Ohmic bebavior
	stable up to 1 C/cm^2

Glass mass production Yield >100m²/month

> Online test system. The efficiency and time resolution can be obtained by cosmic ray while irradiated by Xrays. 0.1C/cm² charge is accumulated in 35 days.

Rate capability of high rate MRPC

Prototype design for CBM-TOF

- ✓ Symmetric two stack structure: 2 x 5 gas gaps
- ✓ Resistive electrodes: low resistivity glass
- ✓ Gap size: 140 µm thickness
- ✓ Active area 200 x 266 mm²
- ✓ Pitch=2.16 mm +2.03 mm = 4.19 mm
- Impedance matching:100 Omh differential

Design of strip-MRPC for high rate region

Glass: low resistive glass 0.7mm thick, 27cm x 25cm Strip: 27cm x 0.7cm, 0.3cm interval, 24 strips Gas gap: 8 x 0.25mm, two stacks Gas box: 600mm x 500mm x 72mm

Beam test @GSI, Oct.2014

Experimental Setup:

CBN

Beam test @ SPS Feb 2015

Wang Yi, Tsinghua University

TIPP 2017, May 21-26, Beijing, China

Data analysis method

The data analysis is based on CBM ROOT, macro developed by **TOF Group**. Analysis Procedure: **3 Main Steps**.

Calibration method

Large signals arrive at discriminator threshold faster, leading to a dependence of measured time and amplitude of the analogue signal.

Amplification gain of PADI varies between each channel, which should be corrected out to get initial amplitude for time-walk correction.

Different cable length and electronic delay lead to the shifting of calculated center of different strip, influencing the position of hits.

Slower particles need a longer time to cross the distance between Dut and Mref, widen the time difference distribution.

Results of strip-MRPC

Performance of Inner zone-MRPC

CBM mile stones

CBM components	TDR	Start	Ready for	Ready
	approveu	production	Installation	
Micro Vertex Detector (MVD)	01.04.17	30.04.18	31.12.19	30.06.20
Silicon Tracking System (STS)	05.07.13	31.03.17	31.03.20	31.12.20
Ring Imaging Cherenkov Detector (RICH)	07.01.14	31.12.16	31.12.19	31.12.20
Muon Detector (MUCH)	28.02.15	31.12.16	31.12.19	31.12.20
Transition Radiation Detector (TRD)	01.04.17	31.12.17	31.12.20	31.12.21
Time of Flight System (TOF)	30.04.15	01.01.17	31.12.19	31.12.20
Electromagnetic Calorimeter (ECAL)	31.12.16	30.06.18	31.12.19	31.12.20
Projectile Spectator Detector (PSD)	28.02.15	31.12.15	31.12.18	31.12.19
Dipol Magnet	01.10.13	30.06.17	31.12.19	30.06.20
Online Systems (DAQ and FLES)	31.12.17	30.06.18	30.06.19	31.12.19

CBM Phase-0 Exp: eTOF at STAR

Install, commission and use 10% of the CBM TOF modules, including the read-out chains at STAR, starting in 2019

CBM participating in RHIC Beam Energy BES-II in 2019-2020:

- Complementary to part of CBM's physics program: $\sqrt{s_{NN}} = 3, 3.6, 3.9, 4,5, 7.7 \text{ GeV} (750 \le \mu_B \le 420 \text{ MeV})$ especially for *B*- & *s-hadrons* production and fluctuations

The rate of CBM-TOF reach 25kHz/cm2 Time resolution ~60ps Free running mode 120 square meters

- It will first used in STAR-eTOF
- Mini CBM will be set up soon!
- Participate FAIR Phase 0 experiments...

Structure of Mini CBM

Thanks for your attention !