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Introduction

The CBM experiment at FAIR aims to explore the QCD phase diagram at moderate
temperatures and high net-baryon densities. The J/ψ meson is considered to be one of
the most important observables for the Quark-Gluon Plasma (QGP), since the potential
that binds the cc-pair can be screened by the presence of free color charges. Besides QGP
effects, a part of the suppression happens because of cold nuclear matter effects. We can
analyze the contribution of these effects in p+A collisions, where no QGP is expected.

In this work we present a simulation of the J/ψ production in p+Au collisions to study the
performance of the detector setup in the CBM experiment. Additionally, we discuss fast
simulation methods which allow to generate huge amounts of events, needed to produce a
significant J/ψ signal.

J/ψ reconstruction

Cuts:

Acceptance cuts:
• pT > 850MeV

c

•Nhit > 0 for TRD

•RICH projection

STS reconstruction cuts:

•χ2/ndf < 3

•Nhit > 3 for STS

RICH PID cuts:

•Nhit > 6

•ANN-PIDe > -0.95

TRD PID cuts:

• 4 > Nhit > 2

•ANN-PIDe > -0.68

Efficiency:

The efficiency depends on the detector geometry and the applied cuts. The TRD is tuned
to an electron efficiency of 90%. This results in a total efficiency of ∼ 65% for single electron
and ∼ 25% for J/ψ-pairs in the RICH+TRD+TOF setup.
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Fig. 1: Single electron efficiency of different detector setups.
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Fig. 2: J/ψ-pair efficiency of different detector setups.

Dielectron Spectrum (for p+Au collisions at Ebeam = 30 GeV):

•main background contribution: eπ-combinations

•mixed-event method to estimate the background for further analysis → J/ψ signal
extraction
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Fig. 3: Invariant mass distribution of J/ψ divided by Nevt.
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Fig. 4: Invariant mass distribution after all cuts.

⇒ not enough statistics to produce a significant J/ψ signal with a full simulation. A possible
solution is the ’fast simulation’ concept.

Simulation

Central proton-gold (p+Au) collisions at
√
sNN = 7.62 GeV. Particle transport with

Geant3.

Software & Setup:

• SIS100 electron setup: STS, RICH, TRD, TOF // no MVD

• default geometries for all detectors

Generated events:

• background particles with UrQMD

• low-mass vector-meson cocktail with pluto + yield prediction with HSD

• J/ψ and ψ(2S) with pluto

Fig. 5: Comparison of the full Simulation to the fast simulation.

Fast Simulation

Advantages: skips time-consuming particle transport and track reconstruction.
⇒ more statistics in less time

Response function:

Information of full simulation are gathered in response functions. It consist of three main
parts:

1. Efficiency: detection probability for different particles

2. Smearing or resolution: accuracy of reconstructed values

3. Particle identification: probability for identifying electrons as pions
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Fig. 6: Example of p smearing of electrons.
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Fig. 7: pT efficiency of different particles.
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Fig. 8: Θ efficiency of different particles.

Dielectron Spectrum (for p+Au collisions at Ebeam = 30 GeV):
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Fig. 9: Invariant mass distribution with fast simulation method.

• J/ψ signal and background shape
matches full simulation shapes

• background of misidentified pions not
yet included; will be added in the fu-
ture
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