

Quality Assurance of Silicon Microstrip Sensors for the CBM Experiment

Iaroslav Panasenko

for the CBM Collaboration

(Münster, DPG-2017)

STS

Silicon Tracking System (STS) – part of the CBM detector – 8 detection layers entirely covered by silicon microstrip detectors .

- Total silicon area 4.2 m²
- Number of sensors about 900 double-sided sensors in 4 sizes
- 1024 strips / side ≈ 1.8M strips in total
- Ultra-thin long microcables
- Read-out electronics outside the detector acceptance

.2×12.4 cm ² .2×6.2 cm ²

CBM MICROSTRIP SENSOR

- n-type Si bulk
- thickness 285-320 μm
- double-sided
- 1024 strips per side
- strip pitch **58 μm**
- strips under 7.5 deg angle on p-side
- double metallization on p-side:
 - AC coupled strips 1st metal layer
 - routing lines for side strips 2nd metal layer
- 4 rows of AC pads + 1 row of DC pads

Depletion Voltage	< 100 V
Leakage current	< 50 µA @ FVD+20 V
Junction breakdown	> 200 V
Coupling capacitance	> 10 pF/cm
Coupling capacitor breakdown	> 100 V
Interstrip capacitance	< 0.6 pF/cm
Polysilicon bias resistor	1.5 MOhm ± 20%
Defective strips	< 1% per sensor

I. Panasenko

QA of Microstrip Detectors for CBM

- Determination of the electrical parameters of each strip requires:
 - Automated test system
 - Well-developed measurement techniques

- Efficient Quality Assurance is mandatory
- Determination of the electrical parameters of each strip requires:
 - Automated test system
 - Well-developed measurement techniques

- Determination of the electrical parameters of each strip requires:
 - Automated test system
 - Well-developed measurement techniques

SENSOR CHARACTERIZATION

Bulk tests:

• IV-CV measurements

Strip tests:

...

- strip/implant breaks/shorts
- pinhole test
- strip leakage current
- coupling capacitance
- interstrip capacitance
- polysilicon bias resistance
- interstrip resistance

CUSTOM PROBE STATION

BULK MEASUREMENTS

- 1st and simple estimation of the sensor quality
- Magnitude of leakage current influences the noise performance
- Leakage current < 10 uA @ 20° C
- No breakdown up to 200 V
- Slope I (150 V) / I (100 V) < 2

BULK MEASUREMENTS

- Bulk Capacitance is similar to parallel-plate capacitor
- Fully depleted detector capacitance is defined by geometric capacitance
- The full depletion voltage is the minimum voltage at which the bulk of the sensor is fully depleted

C_{bulk} [nF]

1.8

1.6

1.4 🗄

• Full depletion is reached at \approx 70-90 V

TYPE: CBM06C6DN

2017

SILICON MICROSTRIP SENSOR

Strip detector is a RC network.

The peak amplifier signal V_s is inversely proportional to the **total capacitance at the input**, i.e. sum of:

- Strip backplane capacitance C_b (contribution to $C_{tot} \approx 20$ %)
- Interstrip capacitance C_{is} (contribution to $C_{tot} \approx 80$ %)

The coupling capacitance influences the signal strength.

CONNECTION SCHEMES

STRIP MEASUREMENTS

24

22

20

18

16

14

12

C_c [pF/cm]

N-side

P-side

 C_{c} – is a capacitance formed by the strip implant, insulation layer (SiO₂ + Si₃N₄) and the readout aluminum line.

In the strip scan C_C is measured by LCR meter between DC and AC pads.

Coupling Capacitance vs Strip

SENSOR ID 10938-2695-2

TYPE

HPK06SM

COUPLING CAPACITANCE

Coupling Capacitance vs Sensor 22 N-side P-side 20 The coupling capacitance was 18 measured for all 1024 strips on each C_c [pF/cm] side of 15 sensors (30720 strips in total) 16 for a moment... 14 12 10 8 C04DM H06SM H06DM H06DM C06SM C02DM H04DM Sensor

Sensor_ID	User friendly name	C _c ^p [pF/cm]	C _c ^ℕ [pF/cm]
10938-1609-5	H04DM	10.29 ± 0.09	11.04 ± 0.09
10938-2695-2	H06SM	9.73 ± 0.07	10.99 ± 0.07
10938-4440-58	H06DM	9.52 ± 0.07	10.49 ± 0.07
10938-4440-60	H06DM	9.46 ± 0.07	10.56 ± 0.07
331827-3	C06SM	17.05 ± 0.06	13.57 ± 0.07
350714-06-1	C02DM	19.99 ± 0.16	16.54 ± 0.16
351139-23	C04DM	22.81 ± 0.09	20.38 ± 0.09

INTERSTRIP MEASUREMENTS

 C_{is} – main contributor to the input capacitance of the FEE – defines its noise performance

C_{is} has to be significantly smaller than coupling capacitance in order to ensure a good charge collection.

TOTAL STRIP CAPACITANCE

The total strip capacitance C_{tot} is defined as the sum of the capacitance of the strip to the backplane and the interstrip capacitance to adjacent strips:

$$C_{tot} = C_b + 2C_{is} + C_{rs}$$

Sensor_ID	User friendly name	C _{tot} ^P [pF/cm]	C _{tot} [№] [pF/cm]
10938-1609-5	H04DM	1.033 ± 0.015	0.988 ± 0.011
10938-2695-2	H06SM	1.032 ± 0.011	1.025 ± 0.011
10938-4440-58	H06DM	1.014 ± 0.011	1.001 ± 0.011
10938-4440-60	H06DM	1.017 ± 0.011	1.001 ± 0.011
331827-3	C06SM	1.228 ± 0.011	1.546 ± 0.012
350714-06-1	C02DM	1.215 ± 0.028	1.491 ± 0.029
351139-23	C04DM	1.221 ± 0.015	1.447 ± 0.016

MICROCABLE STACK-UP

Goal : To measure capacitance of a single trace in micro-cable stack to everything $\equiv C_{TOT}$

Layers Lengths:

- N-Top = 28.1 cm;
- N-Bot = 28.0 cm;
- P-Bot = 27.0 cm;
- P-Top = 27.1 cm.

Number of Traces/layer: 64

TRACE SCAN

TOTAL TRACE CAPACITANCE

Total trace capacitance for #2-11 micro-cable stack-up $C_{TOT} = 0.382 \pm 0.020 \text{ pF/cm}$

Total Trace Capacitance: Design goal : **0.5 pF/cm**

Simulations:

D.Soyk et al., Capacitance studies of the CBM STS microcable stack-up, CBM Progress Report 2016, p.41

inner layer [pF/cm]	outer layer [pF/cm]
0.387	0.367

SUMMARY

- Prototype sensors for STS of CBM experiment were 0 successfully tested using automated custom built probe station at University of Tuebingen.
- Coupling Capacitance \geq 10 pF/cm for both vendors and 0 all sensor sizes.
- *Total Strip Capacitance* **~ 1 pF/cm** for HPK sensors and 0 higher for CIS sensors (see graphs).
- For both vendors *Total Strip Capacitance* is significantly 0 smaller than Coupling Capacitance what ensures a good charge collection:

$C_{c} / C_{tot} > 10$

Same methods were applied for microcable 0 capacitance determination. Total trace capacitance for present micro-cable stack

 $C_{TOT} = 0.382 \pm 0.020 \text{ pF/cm}$

Developed capacitance measurement techniques are a 0 powerful tool for sensor characterization.

