

Energy resolution measurements with the CBM-TRD using a 55 Fe-Source

The Readout Chamber

The Transition-Radiation-Detector (TRD) of the CBM Experiment consists of radiators and multiwire proportional chambers filled with a gas mixture of 85% Argon and 15% CO₂. Two full-size (59 x 59 cm²) prototypes have been build at the Institut für Kernphysik in Frankfurt and were equipped with a plane of anode wires with alternating high voltages. The produced charge is measured on a pad plane on the backside but can also be measured with the anode wires.

The Source

- Material: ⁵⁵Fe decays via electron capture into ⁵⁵Mn
- The significant K_{α} peak is at 5.9 keV
- An Argon-escpae peak is at 2.9 keV
- Both peaks are used for calibration

Measurements with anode readout

Readout setup

- Signal is decoupled by a capacitor
- Preamplifier amplifies the signal
- Discriminator defines a trigger signal
 ADC converts the signal from analog into digital
- PC for analysis and saving the data

Measurement with the SPADIC 1.0

Readout setup

- SPADIC 1.0 is positioned on the backside of the chamber and conected to 32 pads with a flat cable
- SPADIC 1.0 triggers and shapes the signal in a defined form (80ns shaping time)
- Syscore board collects data from up to three SPADICs and converts it into an optical signal
- Glass fiber connects Syscore with PC

Triggering

- Incoming charge is collected on pads
- Charge on one pad reaches the threshold
- Self-triggered pad triggers its two neighbours

 ⇒ called "3-pad-cluster"
- Also 2 adjacent pads can be self-triggered at the same time
- Both trigger their neigbour
 ⇒ called "4-pad-cluster"
- The sum over all pads in one cluster gives the produced charge