Performance of 4-Dimensional Cellular Automaton Track Finder in CBM

Akishina V., Vassiliev I., Kisel I., Zyzak M.

für Bilduna

und Forschu

- 1 Goethe-Universität Frankfurt, Frankfurt am Main, Germany
- 2 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- 3 Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany

DPG Spring Meeting, Münster 28.03.2017

FIAS Frankfurt Institute GOBTHE for Advanced Studies CONTRES

FAIR E = 1 ()

Reconstruction challenge in CBM

10²

10

1

0

2000

4000

6000

8000

- Interaction rate up to 10 MHz
- free-streaming data
- self-triggered front-end electronics
- no hardware trigger

- Time-slice reconstruction rather than event-by-event
- Time-based tracking: 4D (x, y, z, t)

Events overlap on hit level

2 of 13

Correct procedure of event building from time-slices is crucial for right physics interpretation

Time, ns

10000

Reconstruction challenge in CBM

- Future fixed-target heavy-ion experiment
- 10⁷ Au+Au collisions/sec
- ~ 1000 charged particles/collision
- Non-homogeneous magnetic field
- Double-sided strip detectors (85% fake space-points)

Full event reconstruction will be done on-line at the First-Level Event Selection (FLES) and off-line using the same FLES reconstruction package.

Cellular Automaton (CA) Track Finder Kalman Filter (KF) Track Fitter KF short-lived Particle Finder

All reconstruction algorithms are vectorized and parallelized.

3 of 13

4D Reconstruction Chain

Cellular Automaton Based Track Finder

Time-based CA Track Finder

How to use time information in tracking?

- Triplets are build from the hits with the same time measurement within 3σ of detector precision
- Fast access to the hits is provided by time-based structure: hits are sorted by time and space coordinates and stored into the time-based grid
- Due to parallel concept memory is allocated before run and the whole time slice data is stored constrain on the time slice size (100 mbias)

4D Track Finder in CBMROOT

100 AuAu 10 AGeV mbias events

Efficiency, %	3D	0.1 MHz	1MHz	10 MHz
All tracks	92.5%	93.8%	93.5%	91.7%
Primary high-p	98.3%	98.1 %	97.9%	96.2%
Primary low-p	93.9%	95.4%	95.5%	94.3%
Secondary high-p	90.8%	94.6%	93.5%	90.2 %
Secondary low-p	62.2%	68.5%	67.6%	64.3%
Clone level	0.6%	0.6%	0.6%	0.6%
Ghost level	1.8%	0.6%	0.6%	0.6%
True hits per track	92%	93%	93%	93%
Hits per MC track	7.0	7.0	6.97	6.70

Timeslices from CBMROOT Timebased digitisation, cluster and hit finder

4D Track Fit

 $(\mathbf{x}, \mathbf{y}, \mathbf{t}_{\mathbf{x}}, \mathbf{t}_{\mathbf{y}}, \mathbf{q/p}) \rightarrow (\mathbf{x}, \mathbf{y}, \mathbf{t}_{\mathbf{x}}, \mathbf{t}_{\mathbf{y}}, \mathbf{q/p}, \mathbf{t})$

Time is added to the track fit:

- The vector of parameters and its covariance matrix are extended.
- Propagation and Kalman filter are extended.
- Errors for all hits assumed constant.
- Fit shows correct results: high resolution and pulls close to 1.

4D Reconstruction Chain

Ideal Event Builder

KF Particle Finder with time-slices

10 MHz, AuAu, 10 AGeV, 300k mbias UrQMD events, ideal PID, realistic EB

- 4D reconstruction chain from hit production to physics analysis level is established.
- Monte Carlo PID is used for track identification.
- Extreme case of 10 MHz interaction rate will require further include of the information from fast detectors (ToF) and multi primary vertex analysis.

Efficiency Momentum Distribution

 K^0_s

Λ

12 of 13

Conclusions and Outlook

Conclusions:

- First version of time-based reconstruction chain is established
- Time-based 4D track finder, track fitter have been developed.
- 4D reconstruction is efficient and scalable.
- Realistic Event Builder algorithm is under development
- First version of time-based physics analysis is implemented.

Outlook:

- Include ToF information
- Multi primary vertex analysis
- Include realistic PID