Progress with System Integration of the CBM Silicon Tracking Detector

Johann M. Heuser, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany

for the CBM Collaboration

DPG Frühjahrstagung, Münster, Germany, 27 March 2017

STS - Task & integration challenges

STS ladder arrangement

- pile-up free track point determination
 in high-rate collision environment:
 - 10⁵ 10⁷/s (A+A), up to 10⁹/s (p+A),
 track multiplicities up to 700/collision
 - momentum resolution $\Delta p/p \approx 1-2\%$
- physics aperture : $2.5^\circ \le \Theta \le 25^\circ$
- 8 tracking stations: $0.3 \text{ m} \le z \le 1.0 \text{ m}$
 - material : $\approx 0.3 \% 1\% X_0$ per station
 - 896 detector modules , 106 ladders
- double-sided silicon microstrip sensors
 - hit spatial resolution \approx 25 μm
 - operation at $T = -5 \ \mathcal{C}$ (radiation field)
- 1.8 million r/o channels, 14 000 r/o ASICs
 - time-stamp resolution \approx 5 ns
 - power dissipation: \approx 40 kW

STS - Task & integration challenges

Challenges:

- precision assembly of modules, ladders, stations
- cooling of front-end electronics
- cold sensors thermal enclosure
- routing of cables/cooling tubes
- installation into dipole magnet

STS ladder arrangement

- pile-up free track point determination in high-rate collision environment:
 - 10⁵ 10⁷/s (A+A), up to 10⁹/s (p+A), track multiplicities up to 700/collision
 - momentum resolution $\Delta p/p \approx 1-2\%$
- physics aperture : $2.5^\circ \le \Theta \le 25^\circ$
- **8** tracking stations: $0.3 \text{ m} \le z \le 1.0 \text{ m}$
 - material : $\approx 0.3 \% 1\% X_0$ per station
 - 896 detector modules , 106 ladders
- double-sided silicon microstrip sensors
 - hit spatial resolution \approx 25 μ m
 - operation at T = -5 °C (radiation field)
- 1.8 million r/o channels, 14 000 r/o ASICs
 - time-stamp resolution \approx 5 ns
 - power dissipation: \approx 40 kW

Integration – from modules to stations

Progress with module assembly

GSI-Detector Lab

Work flow, per side:

- TAB bonding of 1. microcables to ASICs
- TAB bonding of 2. microcables to silicon sensor
- 3. die- and wirebonding of ASICs to FEB
- gluing of shielding 4. layers and spacers

J. Heuser - Progress with System Integration of the CBM Silicon Tracking Detector

Progress with module assembly

Detector ladders

sensor mounting with "L-legs"

Beampipe cut-out for central ladders

Carbon fiber ladders

prototypes made in aerospace industry, Germany

- length: 120 cm
- tube supports: 1.5/0.5 mm \varnothing

	prototype 1	prototype 2	prototype 3
support	CFK pipe	CFK pipe	CFK pipe
	0.5/1.5 mm Ø	0.5/1.5 mm Ø	0.5/1.5 mm Ø
matrix	L20/EPH960	L20/EPH960	L20/EPH960
fiber	M55J/6K	M55J/6K	M60J/3K
roving	1	2	3
weight	11.2 g	14.8 g	11.2 g

Progress with ladder assembly

J. Heuser - Progress with System Integration of the CBM Silicon Tracking Detector

Progress with ladder assembly

Progress with ladder assembly

J. Heuser - Progress with System Integration of the CBM Silicon Tracking Detector

STS in Dipole Magnet

Progress with STS CAD model

Sandwich concept:

- Lightweight and stiff
- Parameters depend on filler material
- Versatile configuration

- Unit disassembly
- Integrated design

Peripheral cabling design

Further development requires:

- Thermal testing
- Requirement summary
- Coordination with industrial manufacturers

Further CAD development:

- Finalize cabling concept
- Schematic cable routing
- Integrated design

Construction of a mock-up STS

¼ Unit 07 – detailed CAD:

Status:

- CAD finished
- Assembly ongoing
- Final parts manufacturing
 - FEB dummies
 - ROB/POB dummies

Testing of different types of ladder bearings:

Development of ladder handling tool

Design issues:

- Stress free ladder handling
- Variable length for multiple ladder types
- Mounting and dismounting from Master jig to C-Frame
- Sufficient precision
- Easy handling

Status

- First prototype assembled
- Tests ongoing
- Mounting of Mock-up ladders planned

LV/HV powering scheme

- Sensor bias: ± 200 V, common ground
- FEE floating
- ASIC powering:
 ~ 2.2 V, ca. 4 A
 (per FEB) by a
 FEAST DC/DC
 converter
- Two LDOs convert to 1.8 V (digital) and 1.2 V (analog)
- 12 V, ca. 1 A, and HV are delivered from outside STS

Summary

- Challenges of CBM-STS system integration:
 - precision assembly and mounting of its components, to yield the final spatial resolution
 - fast front-end electronics requires efficient cooling (CO2)
 - cold operation of sensors requires thermal enclosure
 - routing of services
 - installation in dipole magnet
- Module assembly: fully developed, dummy modules produced.
 - FEB under development for functional modules
- Ladder assembly: procedure and tooling under development
- System integration:
 - CAD well advanced, in concept and detail
 - ¼ unit demonstrator and cooling demonstrators under construction
 - electronics & powering components being produced
 - open topic: beam pipe section in STS
- Aim to advance system integration towards production readiness in 2018.

Key project institutes:

- GSI-FAIR, Darmstadt, Germany
- JINR, Dubna, Russia
- Univ. Tübingen, Germany
- KIT, Karlsruhe, Germany
- AGH, Cracow, Poland; JU, Cracow, Poland; WUT, Warsaw, Poland
- Assembly Centers: GSI-FAIR, JINR -VBLHEP