

Design of a control and monitoring system for the mirror alignment of the CBM RICH detector

Jordan Bendarouach

CBM Experiment, RICH Detector – JLU Gieβen – 27th-31st March

Introduction

- CBM at FAIR: explore QCD phase diagram in the region of high baryon density using A+A collisions
- Energy range (for Au-Au) from 2 up to 11 AGeV beam energy @SIS100
- EM probes:
 - In low mass region (π0, η, ρ, ω, φ)
 Photons: access to early temperature of the fireball
 Low mass vector mesons: hadron dynamics
 - Intermediate mass region
 Slope indicating thermal radiation of the fireball Also hints for a quarkyonic phase?
 - High mass region: Investigation of the charm quark propagation (J/ Ψ)
- e^{+/-} Identification with RICH detector

Introduction

- CBM: high ring density environment
 - reconstruction efficiency of 97% (Au-Au @8GeV)
- RICH has to be exchanged on a yearly/bi-yearly basis:
 - Movements by crane inducing misalignments of the mirror system, which will result in:
 - Efficiency losses in ring reconstruction: ring splitting, ring distortion, double ring, ring-track mismatching
 - Misidentification due to distorted ring parameters
- Perfectly aligned and stable mirror system is required for accurate and highly efficient ring reconstruction
- Development of an alignment correction cycle in software

8 AGeV

Principle of the correction with data*

- Fitted ring center C' and extrapolated track hit C
- Displacement a
- Calculation of Cerenkov distances θ_{ch} and angles ϕ_{ch}
- Sinusoidal behavior: $\theta_{ch} = \theta_0 + \Delta \Phi * \sin(\Phi_{ch}) + \Delta \lambda * \sin(\Phi_{ch})$

JUSTUS-LIEBIG-

UNIVERSITÄT GIESSEN

CBM

RIC

Method efficiency

- Method is working
- Study its accuracy, depending on the mirror wall position
 - Misalignments applied around vertical and horizontal axes for different mirror tiles
 - Study for central and outer tiles
 - Range of rotation values: 0.1; 0.2; 0.3; ...; 2; 3; 4; 5 mrad

Jordan Bendarouach - DPG 2017

Method efficiency

- Method is working
- Study its accuracy, depending on the mirror wall position
 - Misalignments applied on central and outer tiles
 - Values range: [0.1; 0.2; 0.3; ...; 2; 3; 4; 5]

Jordan Bendarouach - DPG 2017

Applied

[mrad]

Mirror wall position study – central region

- Misalignments applied on central tile ٠
 - Rotations around one axis
 - Rotations around both axes
- Color code:
 - Applied misalignment: purple
 - **Reconstruction in X: orange**
 - **Reconstruction in Y: green** •

Reconstructed misalignment [mrad] Reconstructed misalignment in X on tile 1_4 5 4 3 2 1 0 Ω 1 2 3 6 misalignment Applied misalignment in X — Reconstructed misalignment in X Reconstructed misalignment in Y

Correction for central tiles yields good results

Mirror wall position study – outer region

- Misalignments applied on outer tile
 - Rotations around one axis
 - Rotations around both axes
- Color code:
 - Applied misalignment: purple
 - Reconstruction in X: orange
 - Reconstruction in Y: green

Correction for outer tiles carries an increasing error

Due to detector geometry

Jordan Bendarouach - DPG 2017

Mirror wall position study – outer region

- More on problem appearing in the outer region
- Due to detector geometry
- Mean Ring-Track distance study
 - Larger in the outer region
 - Limiting factor for the corrections

Outline

- Method established and performances studied
- Presentation of the full correction cycle
- Study of the correction technique efficiency depending on the mirror wall position
 - Discrepancy between two cases studied
 - Investigation for the outer region shown
- Study the distribution of Ring-Track distance on the PMT plane
- Study impact of correction cycle on ring-track matching efficiency

CBM

JUSTUS-LIEBIG-

UNIVERSITÄT

Thank you for your attention

