Design of a control and monitoring system for the mirror alignment of the CBM RICH detector

DPG 2017 Darmstadt
Jordan Bendarouach

Introauction

- CBM at FAIR: explore QCD phase diagram in the region of high baryon density using A+A collisions
- Energy range (for Au-Au) from 2 up to 11 AGeV beam energy @SIS100
- EM probes:
- In low mass region ($\pi 0, \eta, \rho, \omega, \varphi$)

Photons: access to early temperature of the fireball Low mass vector mesons: hadron dynamics

- Intermediate mass region

Slope indicating thermal radiation of the fireball Also hints for a quarkyonic phase?

- High mass region:

Investigation of the charm quark propagation (J/ Ψ)

- $\mathrm{e}^{+/-}$Identification with RICH detector

Introduction

- CBM: high ring density environment
- reconstruction efficiency of 97% (Au-Au @8GeV)
- RICH has to be exchanged on a yearly/bi-yearly basis:
- Movements by crane inducing misalignments of the mirror system, which will result in:
- Efficiency losses in ring reconstruction: ring splitting, ring distortion, double ring, ring-track mismatching
- Misidentification due to distorted ring parameters

- Perfectly aligned and stable mirror system is required for accurate and highly efficient ring reconstruction
- Development of an alignment correction cycle in software

Principle of the correction with data*

- Fitted ring center \mathbf{C}^{\prime} and extrapolated track hit C
- Displacement a
- Calculation of Cerenkov distances $\theta_{c h}$ and angles $\phi_{c h}$
- Sinusoidal behavior: $\theta_{\mathrm{ch}}=\theta_{0}+\Delta \Phi * \sin \left(\Phi_{c h}\right)+\Delta \lambda * \sin \left(\Phi_{c h}\right)$

Method efficiency

- Method is working
- Study its accuracy, depending on the mirror wall position
- Misalignments applied around vertical and horizontal axes for different mirror tiles
- Study for central and outer tiles

Method efficiency

- Method is working
- Study its accuracy, depending on the mirror wall position
- Misalignments applied on central and outer tiles
- Values range: [0.1; 0.2; 0.3; ... 2; 3; 4; 5]

Jordan Bendarouach - DPG 2017
6/11

Mirror wall position study - central region

Reconstructed misalignment

- Correction for central tiles yields good results

Reconstructed misalignment

 [mrad]Reconstructed misalignment in Y on tile 1_4

Reconstructed misalignment

Mirror wall position study - outer region

- Misalignments applied on outer tile
- Rotations around one axis
- Rotations around both axes
- Color code:
- Applied misalignment: purple
- Reconstruction in X: orange
- Reconstruction in Y: green

Reconstructed misalignment

- Correction for outer tiles carries an increasing error
- Due to detector geometry

Reconstructed misalignment

Mirror wall position study - outer region

- More on problem appearing in the outer region
- Due to detector geometry
- Mean Ring-Track distance study
- Larger in the outer region
- Limiting factor for the corrections

Outline

- Method established and performances studied
- Presentation of the full correction cycle
- Study of the correction technique efficiency depending on the
 mirror wall position
- Discrepancy between two cases studied
- Investigation for the outer region shown
- Study the distribution of Ring-Track distance on the PMT plane
- Study impact of correction cycle on ring-track matching efficiency

Jordan Bendarouach - DPG 2017

Thank you for your attention

