A parametric response model for the self-triggered MRPC readout scheme of the CBM time-of-flight system

Christian Simon Physikalisches Institut Universität Heidelberg

for the CBM ToF group

The CBM time-of-flight wall

cf. J. Lehnert, "The Compressed Baryonic Matter experiment at FAIR", HK 30.1 cf. I. Deppner, "The CBM Time-of-Flight wall", HK 16.2

- main hadron identification tool up to momenta of 5 GeV/c in the angular • range 2.5° - 25° covered by the S(ilicon) T(tracking) S(tation) detector
- dimensions: 9 m high, 13.5 m wide, active area of about 120 m² •
- time resolution 80 ps, efficiency > 95%•

I. Deppner et al., J. Instrum. 9 (2014) C10014

•

10⁵

lux Hz/cm²

(M)RPC working principle

- gas detectors for timing measurements and trigger applications
- Charged particles traversing the chamber form electron-ion pairs in the gas by ionization.
- Due to the applied high-voltage field the electrons are accelerated and ionize further gas molecules ("avalanche").
- Avalanche electrons induce mirror charges in the external read-out electrodes (signal formation).
- Electrons and positively charged gas ions drift towards opposing glass plates, accumulate on the surfaces and cause a local reduction of the electric field in the gap.
- Charges compensate one another by means of bulk and surface currents on relaxation time scales of $O(\text{ms}) \le \tau \le O(\text{s})$, depending on the glass resistivity. $E(t) = E_0 (1 - \exp(-t/\tau))$

multiple gaps

I. Deppner, Ph.D. Thesis, Heidelberg University, Heidelberg, Germany, 2013

Flux capability studies in beam

J. Wang et al., Nucl. Instrum, Methods A 713 (2013) 40

(see also: I. Deppner et al., J. Instrum. 7 (2012) P10008; M. Petrovici et al., J. Instrum. 7 (2012) P11003; Z. Weiping et al., Nucl. Instrum. Methods A 735 (2014) 277)

- Exposing the detector to a sustained particle flux should regarding the • operation principle – decrease its detection efficiency until local reduction and recovery of the electric field cancel out.
- The average degradation effect on MRPC detection • efficiency and time resolution has been thoroughly studied as a function of incident particle flux.
- example: in-beam test at ELBE in April 2011 with a • 30 MeV electron beam (beam spot: a few cm²)
- conclusion: "The maximum tolerable particle flux • approaches the 100 kHz/cm² land-mark."

DPG-Frühjahrstagung 2017 - Christian Simon - Universität Heidelberg

PMRPC

2.5 x 10¹⁰ Ωcm

pads

6 x 2

2.2 cm (2 cm + 0.2 cm)

2 x 5

220 µm

SMRPC

2.5 x 10¹⁰ Ωcm

strips

3

24 cm

2 x 5

250 µm

Degradation as a function of irradiation time

- In our flux capability studies, detector data were averaged within accelerator spills and across spills.
- Can we observe the MRPC gradually entering field breakdown/recovery equilibrium, i.e. how the degradation of the MRPC response evolves with increasing time in spill? Yes, if
 - events are arranged on a continuous time axis (technical matter)
 - equilibrium is not reached too fast (bin size limited by statistics)
 - incident particle fluxes are sufficiently high
- Some hint at efficiency degradation in spill was reported based on an analysis of data taken at SPS (30 AGeV/c Pb beam on a Pb target).

Simulation of the response degradation

C. Simon et al., CBM Progress Report 2016 (2017) 133

- To model the response degradation in spill a Monte-Carlo simulation including a new parametric digitization scheme (no avalanche dynamics) and memory effects of the MRPC's electric field is being developed.
- Ansatz: Be $Q_{ind,0}$ a random variable which describes the total electric charge spectrum induced by avalanches in the readout plane of an unloaded MRPC. Be $q_{max,0}$ the highest possible value of $Q_{ind,0}$ and $q_{ind,i}$ the charge actually induced by the i-th avalanche at position \mathbf{x}_i and time t_i . Be further r_{imp} an impact radius quantifying the spatial extent of an E-field reduction and τ_{MRPC} the relaxation time for field restoration.
- Then in this approach the induced charge spectrum accessible to the nth avalanche at coordinates (\mathbf{x}_n, t_n) follows the probability distribution of

$$Q_{\text{ind},n} = \left[1 - \sum_{i=1}^{n-1} \left\{\frac{q_{\text{ind},i}}{q_{\text{max},0}} \times \frac{1}{1 + \left(\frac{\mathbf{x}_n - \mathbf{x}_i}{r_{\text{imp}}}\right)^2} \times \exp\left(-\frac{t_n - t_i}{\tau_{\text{MRPC}}}\right)\right\}\right] Q_{\text{ind},0}$$

M. Abbrescia, "Improving rate capability of Resistive Plate Chambers", RPC2016

Parametric MRPC response description

- Assumption: The total induced charge on the (undivided!) readout plane • follows a Landau distribution. 10⁵
 - TMath::Landau(Q_{ind},location,scale,kTRUE)
- 10³ Assumption: This charge is distributed in the readout plane • 10² according to the electrostatically induced charge density.

$$\sigma(x,y) = \frac{Q_{\text{ind}}R}{2\pi(x^2 + y^2 + R^2)^{3/2}}$$

$$2\pi(x^2 + y^2 + R^2)^{3/2}$$

$$0 \ 20 \ 40 \ 60 \ 80 \ 10 \ total induced charge [a.u.]$$
Assumption: The strip charges correspond to the analytical integral evaluated at the respective strip boundaries.

$$q_{\text{strip}} = \frac{Q_{\text{ind}}}{2\pi} \left[\arctan\left(\frac{x_{\text{high}} y_{\text{high}}}{R\sqrt{R^2 + x_{\text{high}}^2 + y_{\text{high}}^2}}\right) - \arctan\left(\frac{x_{\text{low}} y_{\text{high}}}{R\sqrt{R^2 + x_{\text{low}}^2 + y_{\text{high}}^2}}\right) - \arctan\left(\frac{x_{\text{low}} y_{\text{low}}}{R\sqrt{R^2 + x_{\text{high}}^2 + y_{\text{low}}^2}}\right) + \arctan\left(\frac{x_{\text{low}} y_{\text{low}}}{R\sqrt{R^2 + x_{\text{low}}^2 + y_{\text{low}}^2}}\right) \right]$$

Wolfram | Alpha

Entries 860799

60

4.525

4.705

100

Mean

RMS

 10^{4}

10

Parametric MRPC response description

• Assumption: The (amplified!) signal is shaped according to a normalized Landau distribution multiplied by the strip charge.

- $f(t) = q_{\text{strip}} \times \text{TMath} :: \text{Landau}(t, \text{mpv}, \text{sigma}, \text{kTRUE})$

- Assumption: Leading and trailing edge discrimination points in time depend on the numerically evaluated intersections of signal f(t) and threshold s.
 - $s = q_{\text{strip}} \times \text{TMath} :: \text{Landau}(t, \text{mpv}, \text{sigma}, \text{kTRUE})$
 - numerical methods provided by the GNU Scientific Library (GSL)

Run time offsets and time walk

• The response parametrization scheme features the main effects an MRPC calibration algorithm needs to flatten.

Model parameter adjustment

- The GSL implementation of the downhill simplex minimization algorithm is used to fit the response model to a particular MRPC's characteristics.
- Based on O(10⁶) simulated, uniformly distributed hits in the readout plane of an MRPC the simplex algorithm iteratively minimizes a χ^2 value comprising measured constraints (ToT mean and RMS, efficiency, ...).

Simulated efficiency degradation

C. Simon et al., CBM Progress Report 2016 (2017) 133

 In a Monte-Carlo parameter study the detection efficiency of a 1 cm² spot in the center of an MRPC prototype with dimensions 32 x 27 cm² was simulated for low-resistive and float glass electrodes as a function of time in spill at three different incident particle fluxes.

- The (arbitrary) impact radius r_{imp} of 100 μ m is the same in both cases. It needs to be fitted to beam time data if the degradation effect can be extracted.
- The run time of the field memory computation grows quadratically with the number of MRPC hits (possible application of multi-threading).

Summary and Outlook

- Recent in-beam test results from SPS (November '15 and '16) might allow for studying the time curve of the MRPC performance degradation. First hints observed with a float-glass prototype need to be reproduced and consolidated.
- A parametrization of the local electric field breakdown/recovery in an MRPC has been developed.
- A self-triggered, front-end driven data acquisition with readout channel dead times of a few nanoseconds (GET4-AFCK-FLIB, used in November '16) – in principle – allows for studying the degradation of the MRPC response as a function of distance in time to the previous hit in a readout channel. Data analysis is ongoing.

cf. D. Emschermann, "A prototype of the free-streaming data acquisition system for the Compressed Baryonic Matter experiment at FAIR", **HK 15.4**

cf. D. Hutter, "Evaluation of the CBM FLES input interface at 2016 CERN/SPS beam test", **HK 63.6**

The CBM ToF group

Participating institutes

- THU DEP, Beijing, China
- IFIN-HH, Bucharest, Romania
- GSI, Darmstadt, Germany
- TUD IKP, Darmstadt, Germany
- HZDR ISP, Rossendorf, Germany
- GU IRI, Frankfurt, Germany
- USTC DMP, Hefei, China
- RKU PI, Heidelberg, Germany
- CCNU IOPP, Wuhan, China
- SSC RF ITEP, Moscow, Russia

Special thanks go to

- Norbert Herrmann
- Ingo Deppner
- Pierre-Alain Loizeau

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654168.

Response residuals and cluster size

Analytic MRPC response descriptions

- Neglecting space-charge effects MRPC characteristics can be expressed rather neatly W. Riegler, C. Lippmann, R. Veenhof, Nucl. Instr. and Meth. in Phys. Res. A 500 (2003) 144
- λ : mean free path
- α : Townsend coefficient
- 7 : attachment coefficient
- $E_{\rm W}/V_{\rm W}$: weighting field
 - d : gap size
 - $v \hspace{.1in}:\hspace{.1in} \operatorname{drift} \operatorname{velocity}$
 - Q_{thr} : threshold charge

C. Lippmann, W. Riegler, Nucl. Instr. and Meth. in Phys. Res. A 517 (2004) 54

 $\frac{1}{t}$ probability to create a primary charge cluster in the gap at [z,z+dz]

^t $P(z) = \lambda^{-1} \exp\left(-\frac{z}{\lambda}\right)$ induced charge in the readout electrode $Q_{ind}(z) = \frac{E_W}{V_W} \frac{e_0}{\alpha - \eta} e^{(\alpha - \eta)(d - z)} - 1$ timing precision $\sigma_{RPC} = \frac{1,28255}{(\alpha - \eta)v}$ gap efficiency

 $\varepsilon = 1 - e^{-(1 - \frac{\eta}{\alpha})\frac{d}{\lambda}} \left(1 + \frac{V_W}{E_W} \frac{\alpha - \eta}{e_0} Q_{thr} \right)^{\frac{1}{\alpha\lambda}}$

https://en.wikipedia.org/wiki/Townsend_discharge#/media/File:Electron_avalanche.gif

 But some experimental MRPC results (in particular the induced charge) cannot be reproduced by applying these expressions! Space-charge effects play a dominant role in MRPCs.

MRPC space-charge effects

- Space-charge effects which inhibit avalanche growth can be simulated by computationally costly MC methods and might not even converge to experimental findings
- Computing signal propagation, termination, crosstalk and losses in the readout strip electrodes is also rather time consuming
- Thus, a microscopic approach is not feasible for the design of the digitizer class
- Instead, the response function should be parametrized taking into account measured observables from in-beam prototype tests

C. Lippmann, W. Riegler, Nucl. Instr. and Meth. in Phys. Res. A 517 (2004) 54

I.M. Deppner, Ph.D. Thesis, Heidelberg University, Heidelberg, Germany, 2013

Basic MRPC readout principle

- differential analog signals on the read-out strips are merged by subtraction, discriminated and converted to LVDS pulses (PADI chip)
- timing quantities:
 - t_L , t_R (leading edge)
 - ToT (pulse width)
- digitization by time-to-digital converters (TDCs)
 - CBM paradigm: self-triggered digitization and readout

C. Simon et al., 2014 JINST 9 C09028

CBM-TOF Technical Design Report

DPG-Frühjahrstagung 2017 - Christian Simon - Universität Heidelberg

to TDC