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Introduction

The key quantity : signal over noise

I conservative limit at S/N & 15
I charge collection efficiency ε = Qmeasured/Qdeposited limits a signal
I noise is a property of an integrated system

Influence of the irradiation:

I bulk damage leads to the traps of the charge carriers, S ↘
I current increases, shot noise N ↗

Non-perpendicular penetration of the sensor ]

I charge sharing between neighbouring strips, Si ↘
I risk of (partial) charge losses due to threshold
I critical angles:

F arctan

(
300µm

1× 58µm

)
' 11◦, arctan

(
300µm

2× 58µm

)
' 21◦...

I nominal acceptance of the STS:
F 2.5◦ ≤ θ ≤ 25.0◦
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Optional connection schemes

Geometrical effects on the S/N ratio

I S/N ∝ 1/
√
nstrips, where nstrips is a cluster size

I cluster size depending on angle (neglecting cross-talk):
F 0◦ ≤ θ ≤ 11◦, nstrips ≤ 2
F 11◦ < θ ≤ 21◦, 2 ≤ nstrips ≤ 3
F θ ≥ 21◦, nstrips ≥ 3

I S/N deteriorates by factor of
√

3..
√

4 for peripheral ladders

Geometrical solution: (effectively) increasing strip width

I change sensor mask pattern (cost and time consuming)
I introduce alternative connection schemes to r/o electronics:

F two strips to one r/o channel, 2→ 1
F every second strip omitted, 2→ 0
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Motivation for the beam tests

Relativistic protons (close to the real experiment conditions)

monochromatic: predictable ∆E/∆x
low momentum spread: good for angular studies

COSY proton synchrotron in Jülich, Germany [R. Maier, NIM Volume 390, Issues 1–2, 1 May

1997, Pages 1–8, ISSN 0168-9002]

kinetic energy Ek = 1 GeV ± 1� in August 2016
polar angle φ� 0.5◦ (limited by station positioning precision)

Studies of the charge collection
efficiency

I
∆E(1.7 GeV/c)

∆EMIP
= 1.08(4)

Limited scattering in the material

High statistics
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Custom made cooling station

sensor holder
coil made of aluminum tubes
insulated pipes
Lauda chiller
(Tbath > −40◦ C)

beam window
thermal enclosure
glycol input

Sensors will be cooled in STS:

I current decreases
I shot noise ↘

Cooling station was required
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Cooling station design & performance

Cooling station was made:

I plastic outer box
I aluminum inner box
I 40 mm of plastic foam

in between
I coil of 8 parallel

aluminum tubes of
∅6 mm

1:1 ethylene glycol with
distilled water
as cooling liquid

23◦C → −10◦C
' 90 min

∆T < 0.5◦C
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Read-out electronics

nXYTER based read-out chain in use by the STS teams during R&D phase

I ASIC was being upgraded to nXYTER v2 (temperature stability)
I chain not available at that time

Alibava systems was used

I based on the Beetle chip
I 2× 128 r/o channels, DC coupling
I 40 MHz analogue rate
I 128 per chip analogue memory stack
I & 4µs digitisation rate
I components:

F Daughter Board (front-end)
F Mother Board (FPGA based controlling PCB)
F communication with PC via USB

I ≤ 1 kHz data storage to PC
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Customised Daughter Board

One Beetle chip is involved

Wire-bonded to the cut-off
of the nXYTER FEB

I 128 ch./2 ERNI connectors

Aluminium support plate, cooling
block attached

Input lines on the ground potential:

I only on sensor side r/o

However, two sensors were planned
to be tested per one thermal cycle

DBs and flat cables were shielded

I sensor strips act like antennas

Shielding and aluminium box at the
ground potential
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Set of sensors for the beam tests

6 sensors in the PCB frame
(64 channels r/o)

I 2 double-metal, 4 single-metal
pro: exchangeable, access to two

sides
cont: higher noise, 1/4 of Alibava

channels can be used

1 hard-bonded sensor, p-side
(256 channels r/o)

Connection schemes:

I direct connection
I 2→ 1 and 2→ 0

interconnectors
I hard-bonded:

F 8 groups of connections
F 1→ 1, 2→ 1 and 2→ 0
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Beam setup

motorised platform

thermally insulated pipes

adjustable cold station

2× Alibava Mother Boards

fixed station (hard-bonded sensor)

upstream plastic scintillator + PMT

Two sensors exposed in one run:

I cold station (35◦C..-15◦C), x↔ and
φ �, sensor exchangeable

I warm fixed station, hard-bonded
sensor

Triggering with two plastic scintillators
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Collected data

Latency scans for the signal time profile studies (technical runs)

Voltage scan of the hard-bonded sensor (0..200 V)

Temperature scan of the DM sensor

Angular scans (−30◦..30◦):

I double-metal sensors, p ans n sides (at T = −10◦C)
F direct connection
F 2→ 1 and 2→ 0 interconnectors

I “matryoshka” setup for the hard-bonded
sensor (at T = +10◦C):

F open aluminium case inside cold station

> 200 runs, including technical ones, > 70 Gb of data to be analysed
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First steps in analysis
bias and latency scans

Bias voltage, V
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Bias scan of the hard-bonded
sensor (median noise)

I consistent with the nominal
deletion voltage of 70 V

I capacitance dependence for
different interconnections

Latency scan was performed to
deduce the time profile of the
signal

I important for time-selection
in the further analysis

I further runs were performed
with latency 130× 25 ns
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First steps in analysis
baseline and common mode correction
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Raw data were converter from
binaries to ROOT files

Median value from all events served
as zero estimation

Median value over all channels for
each event was then subtracted
(common mode correction)

FWHM of each was used as
noise estimation:
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Examples of the events
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Landau⊗Gaussian spectra
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Very first look on the charge
collection efficiency
(analysis of Ie. Momot)

I cbm06c6w29 sensor
I no event classification yet
I “1 plus 2 neighbours” cluster

hypothesis, 3 < τ < 7 (ns)
I plots look promising

Evidence of S → 1.1S for 2→ 1,
no big change for 2→ 0
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Conclusions

CBM STS beam test at COSY with custom-made read-out system
(Alibava based on the Beetle chip)

Sensor performance was studied in controlled conditions

Clean (or relatively clean) samples of data were acquired,
> 200 runs performed in 6 days:

2� latency scan
2� voltage scans
2� studies of charge collection efficiency for p and n-sides
2� single metal and double metal sensors
2� (connection schemes)×(penetration angles) matrix filled
2� viel Spaß in Jülich

Data analysis is ongoing (much fun is foreseen)

2� offline noise suppression
2 ...
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Data acquisition procedure

1 2 Beetles make “snapshot” of 256
channels every 25 ns

2 Analogue data are stored in 160
rows (×[2 · 128] columns)

3 If trigger comes:

I one of the rows (def. #128)
goes to pipeline

I amplitudes are digitised
sequentially

I TDC output stored

Data is stored to the PC

Binary files are transformed to
ROOT files (custom soft)

Structure of the ROOT file:

I tree: clock, time,
temperature, amplitude[256]

I histograms: pedestals, noise
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Baseline profiles

Amplitude, ADC units
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