

Proton beam tests of silicon microstrip sensors for the CBM experiment

Introduction

- The key quantity : signal over noise
 - \blacktriangleright conservative limit at $S/N\gtrsim 15$
 - charge collection efficiency $\epsilon = Q_{\rm measured}/Q_{\rm deposited}$ limits a signal
 - noise is a property of an integrated system
- Influence of the irradiation:
 - \blacktriangleright bulk damage leads to the traps of the charge carriers, $S\searrow$
 - current increases, shot noise N \nearrow
- $\bullet\,$ Non-perpendicular penetration of the sensor \measuredangle
 - charge sharing between neighbouring strips, $S_i \searrow$
 - risk of (partial) charge losses due to threshold
 - critical angles:

*
$$\arctan\left(\frac{300\,\mu\text{m}}{1\times58\,\mu\text{m}}\right) \simeq 11^\circ$$
, $\arctan\left(\frac{300\,\mu\text{m}}{2\times58\,\mu\text{m}}\right) \simeq 21^\circ$...

- nominal acceptance of the STS:
 - ★ $2.5^{\circ} \le \theta \le 25.0^{\circ}$

Optional connection schemes

• Geometrical effects on the $S\!/\!N$ ratio

- $\blacktriangleright~S/N \propto 1/\sqrt{n_{\rm strips}},$ where $n_{\rm strips}$ is a cluster size
- cluster size depending on angle (neglecting cross-talk):

★
$$0^{\circ} \le \theta \le 11^{\circ}$$
, $n_{\text{strips}} \le 2$

★
$$11^{\circ} < \theta \leq 21^{\circ}$$
, $2 \leq n_{\text{strips}} \leq 3$

★
$$\theta \ge 21^\circ$$
, $n_{\text{strips}} \ge 3$

• S/N deteriorates by factor of $\sqrt{3}..\sqrt{4}$ for peripheral ladders

• Geometrical solution: (effectively) increasing strip width

- change sensor mask pattern (cost and time consuming)
- introduce alternative connection schemes to r/o electronics:
 - two strips to one r/o channel, $2 \rightarrow 1$

Motivation for the beam tests

- Relativistic protons (close to the real experiment conditions) monochromatic: predictable $\Delta E/\Delta x$ low momentum spread: good for angular studies
- COSY proton synchrotron in Jülich, Germany [R. Maier, NIM Volume 390, Issues 1–2, 1 May 1997, Pages 1–8, ISSN 0168-9002]

kinetic energy $E_k = 1 \text{ GeV} \pm 1\%$ in August 2016 polar angle $\phi \ll 0.5^{\circ}$ (limited by station positioning precision)

• Studies of the charge collection efficiency

•
$$\frac{\Delta E(1.7 \,\text{GeV}/c)}{\Delta E_{\text{MIP}}} = 1.08(4)$$

- Limited scattering in the material
- High statistics

Custom made cooling station

Cooling station design & performance

- Cooling station was made:
 - plastic outer box
 - aluminum inner box
 - ► 40 mm of plastic foam in between
 - ► coil of 8 parallel aluminum tubes of Ø6 mm
- 1:1 ethylene glycol with distilled water as cooling liquid
- $23^{\circ}C \rightarrow -10^{\circ}C$ $\simeq 90 \min$

• $\Delta T < 0.5^{\circ}\mathrm{C}$

Read-out electronics

- nXYTER based read-out chain in use by the STS teams during R&D phase
 - ASIC was being upgraded to nXYTER v2 (temperature stability)
 - chain not available at that time
- Alibava systems was used
 - based on the Beetle chip
 - ▶ 2×128 r/o channels, DC coupling
 - $40 \,\mathrm{MHz}$ analogue rate
 - ▶ 128 per chip analogue memory stack
 - $\blacktriangleright \gtrsim 4\,\mu {\rm s}$ digitisation rate
 - components:
 - ★ Daughter Board (front-end)
 - Mother Board (FPGA based controlling PCB)
 - ★ communication with PC via USB
 - $\leq 1 \, \mathrm{kHz}$ data storage to PC

Customised Daughter Board

- One Beetle chip is involved
- Wire-bonded to the cut-off of the nXYTER FEB
 - 128 ch./2 ERNI connectors
- Aluminium support plate, cooling block attached
- Input lines on the ground potential:
 - \blacktriangleright only on sensor side r/o
- However, two sensors were planned to be tested per one thermal cycle
- DBs and flat cables were shielded
 - sensor strips act like antennas
- Shielding and aluminium box at the ground potential

Set of sensors for the beam tests

- 6 sensors in the PCB frame (64 channels r/o)
 - 2 double-metal, 4 single-metal
 pro: exchangeable, access to two sides
 - cont: higher noise, 1/4 of Alibava channels can be used
- 1 hard-bonded sensor, p-side (256 channels r/o)
- Connection schemes:
 - direct connection
 - $2 \rightarrow 1$ and $2 \rightarrow 0$ interconnectors
 - hard-bonded:
 - \star 8 groups of connections
 - * $1 \rightarrow 1$, $2 \rightarrow 1$ and $2 \rightarrow 0$

Beam setup

- Two sensors exposed in one run:
 - ▶ cold station (35°C..-15°C), $x \leftrightarrow$ and $\phi \circlearrowright$, sensor exchangeable
 - warm fixed station, hard-bonded sensor
- Triggering with two plastic scintillators

motorised platform thermally insulated pipes adjustable cold station $2 \times$ Alibava Mother Boards fixed station (hard-bonded sensor) upstream plastic scintillator + PMT

Collected data

- Latency scans for the signal time profile studies (technical runs)
- Voltage scan of the hard-bonded sensor $(0..200 \, \mathrm{V})$
- Temperature scan of the DM sensor
- Angular scans $(-30^{\circ}..30^{\circ})$:
 - double-metal sensors, p ans n sides (at $T = -10^{\circ}$ C)
 - ★ direct connection
 - ★ $2 \rightarrow 1$ and $2 \rightarrow 0$ interconnectors
 - ► "matryoshka" setup for the hard-bonded sensor (at T = +10°C):

- ★ open aluminium case inside cold station
- $\bullet~>200$ runs, including technical ones, $>70~{\rm Gb}$ of data to be analysed

First steps in analysis

bias and latency scans

- Bias scan of the hard-bonded sensor (median noise)
 - consistent with the nominal deletion voltage of 70 V
 - capacitance dependence for different interconnections

- Latency scan was performed to deduce the time profile of the signal
 - important for time-selection in the further analysis
 - ▶ further runs were performed with latency 130 × 25 ns

First steps in analysis

baseline and common mode correction

- Raw data were converter from binaries to ROOT files
- Median value from all events served as zero estimation
- Median value over all channels for each event was then subtracted (common mode correction)
- FWHM of each was used as **noise estimation**:

Raw data before correction

Common mode corrected, baseline subtracted

rs587568d1_allcn_cbm06c6w29sm_+140V_phi+00deg_2047MB run used for the illustration

ĝ

256

128

13/16

Channel #

Examples of the events

• Multiple hit events for $\simeq 1/2$ triggers: careful selection is required

rs587568d1_allcn_cbm06c6w29sm_+140V_phi+00deg_2047MB run used for the illustration

Landau⊗Gaussian spectra

- Very first look on the charge collection efficiency (analysis of le. Momot)
 - cbm06c6w29 sensor
 - no event classification yet
 - "1 plus 2 neighbours" cluster hypothesis, 3 < τ < 7 (ns)
 - plots look promising
- Evidence of $S \rightarrow 1.1S$ for $2 \rightarrow 1$, no big change for $2 \rightarrow 0$

Conclusions

CBM STS beam test at COSY with custom-made read-out system (Alibava based on the *Beetle* chip)

- Sensor performance was studied in controlled conditions
- Clean (or relatively clean) samples of data were acquired, > 200 runs performed in 6 days:
 - Iatency scan
 - ☑ voltage scans
 - \mathbf{V} studies of charge collection efficiency for p and n-sides
 - $\ensuremath{\ensuremath{\mathnormal{D}}}$ single metal and double metal sensors
 - ☑ (connection schemes)×(penetration angles) matrix filled
 - 🗹 viel Spaß in Jülich
- Data analysis is ongoing (much fun is foreseen)
 - ☑ offline noise suppression
 - □ ...

Participated in beam tests: Olga Bertini, Johann Heuser, Anton Lymanets, Hanna Malygina, levgeniia Momot, Maksym Teklishyn

Helped with preparation: Mladen Kis, Adrian Rodrigez², Carmen Simons, Daniel Soyk, Christian Sturm, Oleg Vasylyev — many thanks!

Data acquisition procedure

- 2 Beetles make "snapshot" of 256 channels every 25 ns
- Analogue data are stored in 160 rows (×[2 · 128] columns)
- If trigger comes:
 - ▶ one of the rows (def. #128) goes to pipeline
 - amplitudes are digitised sequentially
 - TDC output stored

- Data is stored to the PC
- Binary files are transformed to ROOT files (custom soft)
- Structure of the ROOT file:
 - tree: clock, time, temperature, amplitude[256]
 - histograms: pedestals, noise

Baseline profiles

40

19/16