Studies of radiation field impact of microstrip sensors for the CBM Silicon Tracking System

Ievgeniia Momot 1,3 for CBM collaboration

¹Goethe University, Frankfurt, Germany

 2 KINR, Kyiv, Ukraine

DPG 2017 Münster

1 Introduction: STS at the CBM experiment

2 Perfomace of irradiated 6×6 sensors

- Electrical characteristics
- Set-up
- Noise
- Charge collection

3 Conclusion/Outlook

l.Momot

Silicon Tracking System @CBM experiment [Mon, 17:00 HK 9.2, O.Bertini]

- Momentum resolution $\Delta p/p \sim 1.5$ %
- Hit spatial resolution $\sim 25 \ \mu m$
- Material budget $\sim 1\% X_0$ /station

- 8 tracking stations
- double-sided sensors, p-n-n structure
- sensors: 6×2 , 6×4 , 6×6 , 6×12 cm²
- 1024 strips per side (58 μ m pitch)
- $\bullet\,$ stereo angle on p side 7.5 deg
- radiation tolerance up to 1×10^{14} 1 MeV n_{eq}/cm^2
- S/N ≥ 10 for the hit reconstruction efficiency $\geq 98\%$

l.Momot

Irradiation Plan 2017

Fluence, 1 MeV n_{eq} / size	$6 \times 6 \ \mathbf{cm}^2$	$6 \times 4 \text{ cm}^2$	$6 \times 2 \ \mathbf{cm}^2$
2×10^{14}	$2 \times \text{vendor}$	$2 \times \text{vendor}$	$1 \times \text{vendor}$
1×10^{14}	$2 \times \text{vendor}$	$1 \times \text{vendor}$	$1 \times \text{vendor}$
5×10^{13}			$1 \times \text{vendor}$
0 - reference sensor	$1 \times \text{vendor}$	$1 \times \text{vendor}$	$1 \times \text{vendor}$
In total to study: 36 sensors			

- Electrical tests (IV, CV) has to be made for all of sensors.
- $6 \times 6 \text{ cm}^2$ and $6 \times 4 \text{ cm}^2$:
 - irradiated;
 - tested in the lab with β source for CCE.
- $6 \times 2 \text{ cm}^2$:
 - to be inserted inside a new PCB and bonded;
 - has to be tested with radioactive source before and after irradiation.
- Some of sensors (≥ 8) :
 - will be tested with the proton beam @COSY;
 - study degradation of detection efficiency with irradiation.

I.Momot

Perfomace of irradiated 6×6 sensors $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Conclusion/Outlook

Electrical characteristics

Sensors 6×6 cm² – selection before irradiation

10 healthy sensors with breakdown at $<500~{\rm V}$ were selected:

- CiS: w1, w3, w8, w9, w10;
- Hamamatsu: w59, w65, w71, w72, w79.

8 of them have been irradiated to doses 1×10^{14} & 2×10^{14} 1 MeV $\rm n_{eq}/\rm cm^2,$ two used as a reference with 0 fluence.

I.Momot

Perfomace of irradiated 6×6 sensors 00000

hm06h8u/70-2e1

cbm06c8w03-1e14 cbm06c8w08-1e14 cbm06h6w65-1e14

chm09b6w71-1

500

Electrical characteristics

Sensors 6×6 – after irradiation

Leakage current dependence on applied voltage.

Bulk capacitance as a function of reversed bias

After irradiation:

- Leakage current increases by factor:
 - 500 for $10^{14} n_{eq}/cm^2$; 1000 for $2 \times 10^{14} e_q/cm^2$.
- Sensors kept constantly under cooled conditions:
 - to suppress current during measurement;
 - to avoid annealing during storage.

Perfomace of irradiated 6×6 sensors $0 \circ 0 \circ 0$

Set-up

Set-up @STS lab

Thermal enclosure:

- cycle from $+23^{\circ}$ C to -11° C and back ~ 2 h;
- cooling liquid: Ethylene Glycole +H₂O;
- 2 radiators; 6 fans.

Source: 90 Sr (maximum e⁻ energy 2.28 MeV) Triggering and selection of MIPs: Scintillator (2.5 cm thick) + PM.

I.Momot

Introduction: STS at the CBM experiment

Perfomace of irradiated 6×6 sensors $0 \otimes 0 \otimes 0$

Noise

Voise

$$Noise_{sensor} = \sqrt{Noise_{DB+sensor}^2 - Noise_{DB}^2}$$

Non-irradiated	0	U _{bias} =	=150	V
----------------	---	---------------------	------	---

	p-side, ADC	n-side, ADC
cbm06c6 w09	8.78 ± 0.15	10.58 ± 0.17
cbm06h6 w72	9.11 ± 0.16	10.45 ± 0.22

Irradiated to $1 \times 10^{14} n_{eq}/cm^2$ @ U_{bias}=300V

cbm06h6 w65	12.28 ± 0.48	11.94 ± 0.22
cbm06h6 w71	11.73 ± 0.25	13.5 ± 0.26
cbm06c6 w03	11.71 ± 0.11	-
cbm06c6 w08	11.71 ± 0.25	9.77 ± 0.25

Irradiated to 2×10^{14}	n_{eq}/cm^2	@ Ubia	as = 500V
----------------------------------	---------------	--------	-----------

	1.	
cbm06c6 w01	10.87 ± 0.10	10.29 ± 0.49
cbm06c6 w10	-	9.67 ± 0.08
cbm06h6 w59	10.5 ± 0.10	11.36 ± 0.10
cbm06h6 w79	to be bonded	

I.Momot

Perfomace of irradiated 6×6 sensors 00000

Conclusion/Outlook

Charge collection

Sensors 6×6 cm² – after irradiation. Preliminary result.

Example: spectra of 2 strip cluster. Assume, our noise is uniform: S/N_{cluster} = S/($\sqrt{2} \times N$)

I.Momot

Conclusion/Outlook

Conclusion:

- $6 \times 6 \text{ cm}^2$ sensors:
 - have been already irradiated and tested for IV, CV;
 - charge collection efficiency studies are in progress.
- $6 \times 4 \text{ cm}^2$ sensors:
 - ready for the next irradiation.
- $6 \times 2 \text{ cm}^2$ sensors:
 - have to be fully measured before irradiation and then irradiated.

Outlook:

To understand S/N of system:

- modules need to be tested;
- CCE & noise component to be finished;
- final read out chain based on STS XYTER to be used.

I.Momot

The CBM experiment

[Wed, 16:45 HK 30.1 J.Lehnert]

Goal: To study the QCD phase diagram at high net baryon densities and moderate temperatures

SIS100 collision energies $2\div11$ A GeV

physics program @SIS100:

- Strangeness;
- Lepton pairs;
- Collective flow, correlations and fluctuations;
- Hypernuclei and hypermatter;
- Charm-anticharm quark pairs.

l.Momot