Hit position error estimation for the CBM Silicon Tracking System

Hanna Malygina¹²³ for the CBM collaboration

¹Goethe University, Frankfurt; ²KINR, Kyiv, Ukraine; ³GSI, Darmstadt

DPG Spring Meeting, Münster, March 2017

Hanna Malygina: Hit position error in CBM-STS

Introduction: Silicon Tracking System

Main STS task is to reconstruct tracks with:

- high momentum resolution ($\Delta p/p \approx 1.5 \%$ for $p > 1 \, {\rm GeV}$);
- ▶ high track reconstruction efficiency (> 96 % for p > 1 GeV).

This leads to the requirements:

- ▶ high spatial resolution ⇒ high granularity;
- Iow material budget.

Design decision: 8 stations, double-sided Si sensors in 1 T magnetic field, r/o electronics outside of the acceptance connected to the sensors with thin microcables.

Spatial resolution are limited with:

- multiple scattering;
- intrinsic detector resolution.

< ロ > < 目 > < 目 > < 目 > < 目 > < 目 > < □ >

Fired channels:

- Neighbouring digis (which presumably originate from the same incident particle) makes a cluster;
- Estimate cluster centre using measured charges *q_i*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Cluster position finding algorithm

Centre-Of-Gravity algorithm (COG):

 $x_{\rm rec} = \frac{\Sigma x_i q_i}{\Sigma q_i} \qquad \qquad \begin{array}{l} x_i - {\rm the \ coordinate \ of \ ith \ strip,} \\ q_i - {\rm its \ charge,} \\ i = 1..n - {\rm the \ strip \ index \ in \ the \ n-strip \ cluster.} \end{array}$

COG is biased: $\langle x_{\text{true}} - x_{\text{rec}} \rangle \equiv \langle \Delta x \rangle \neq 0$ for $n \geq 2$ at fixed q_2/q_1 .

An unbiased algorithm:

2-strip clusters:

$$x_{\rm rec} = 0.5 (x_1 + x_2) + \frac{p}{3} \frac{q_2 - q_1}{\max(q_1, q_2)}, \quad p - {\rm strip \ pitch};$$

n-strip clusters (Analog head-tail algorithm¹):

$$x_{\rm rec} = 0.5 (x_1 + x_n) + \frac{p}{2} \frac{\min(q_n, q) - \min(q_1, q)}{q}, \quad q = \frac{1}{n-2} \sum_{i=2}^{n-1} q_i.$$

¹R. Turchetta, "Spatial resolution of silicon microstrip detectors", 1993

★ ∃ ► ∃ = • • • • • •

COG vs Unbiased cluster position finding algorithm. 2-strip clusters example

Ideal detector model & uniform energy loss. Error bars: RMS of the residual distribution. $q_{1,2}$ – measured charges on the strips.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Comparison of residuals: COG vs Unbiased algorithms

1000 minimum bias Au+Au events at 10 AGeV are simulated with the realistic STS geometry.

The unbiased algorithm is faster and simplifies the hit position error estimation.

Hit position error: introduction and motivation

Method: Calculations from basic principles and independent of: simulated residuals; measured spatial resolution.

Hit position error: basic ideas

$$\sigma^2 = \sigma_{\rm alg}^2 + \sum_i \left(\frac{\partial x_{\rm rec}}{\partial q_i}\right)^2 \sum_{\rm sources} \sigma_j^2,$$

 $\sigma_{\rm alg}$ – an error of the cluster position finding algorithm; σ_j – errors of the charge registration at one strip, among them already included:

•
$$\sigma_{\text{noise}} = \text{Equivalent Noise Charge};$$

•
$$\sigma_{\text{discr}} = \frac{\text{dynamic range}}{\sqrt{12} \text{ number of ADC}};$$

• $\sigma_{non-uni}$ is estimated assuming:

- registered charge corresponds to the most probable value of the energy loss;
- incident particle is ultrarelativistic ($\beta \gamma \gtrsim 100$).
- $\sigma_{\rm diff}$ is negligible in comparison with other effects.

◆□▶ ◆□▶ ◆目▶ ◆目▼ ◇◇◇

Shape

Verification: hit pull distribution

Width

Verification: track χ^2 distribution

10 000 minimum bias events Au+Au @ 10 AGeV

• χ^2/ndf distribution for tracks: mean value must be ≈ 1 .

◆□▶ ◆□▶ ◆目▶ ◆目▼ ◇◇◇

Summary

For the Silicon Tracking System of the CBM experiment:

- Two cluster position finding algorithms were implemented: Centre-Of-Gravity and the unbiased. The last:
 - gives similar residuals as the Centre-Of-Gravity algorithm;
 - simplifies position error estimation.
- Developed method of the hit position error estimation yields correct errors, that was verified with:
 - hit pulls distribution (width and shape);
 - track χ^2/ndf distribution.

Summary

For the Silicon Tracking System of the CBM experiment:

- Two cluster position finding algorithms were implemented: Centre-Of-Gravity and the unbiased. The last:
 - gives similar residuals as the Centre-Of-Gravity algorithm;
 - simplifies position error estimation.
- Developed method of the hit position error estimation yields correct errors, that was verified with:
 - hit pulls distribution (width and shape);
 - track χ^2/ndf distribution.

Thank you for your attention!

- non-uniform energy loss in sensor: divide a track into small steps and simulate energy losses in each of them using Urban model¹;
- drift of created charge carriers in planar electric field
- movement of e-h pairs in magnetic field (Lorentz shift)
- diffusion
- cross-talk due to interstrip capacitance
- modeling of the read-out chip
- ¹ K. Lassila-Perini and L. Urbán (1995)

Energy losses of $2 \, {\rm GeV}$ protons in $1 \, \mu m$ of Si (solid line)². ² H. Bichsel (1990)

< 17 >

↓ ∃ | = \ < \ < \</p>

- non-uniform energy loss in sensor
- drift of created charge carriers in planar electric field: non-uniformity of the electric field is negligible in 90% of the volume;
- movement of e-h pairs in magnetic field (Lorentz shift)
- diffusion
- cross-talk due to interstrip capacitance
- modeling of the read-out chip

Calculated electric field for sensors with strip pitch $25.5\,\mu m$ on the p-side and $66.5\,\mu m$ on the n-side^1.

< □ > < 同 >

S. Straulino et al. (2006)

- non-uniform energy loss in sensor
- drift of created charge carriers in planar electric field
- movement of e-h pairs in magnetic field (Lorentz shift): taking into account the fact that Lorentz shift depends on the mobility, which depends on the electric field, which depends on the z-coordinate of charge carrier;

- diffusion
- cross-talk due to interstrip capacitance
- modeling of the read-out chip

Lorentz shift for electrons and holes in Si sensor.

< □ > < 同 >

Hanna Malygina: Hit position error in CBM-STS

↓ ∃ | = \ < \ < \</p>

- non-uniform energy loss in sensor
- drift of created charge carriers in planar electric field
- movement of e-h pairs in magnetic field (Lorentz shift)
- diffusion: integration time is bigger than the drift time: estimate the increase of the charge carrier cloud during the whole drift time using Gaussian low;
- cross-talk due to interstrip capacitance
- modeling of the read-out chip

Increasing of charge cloud in time.

< □ > < 同 >

<=> = = = <<<<>><</><</></>

- non-uniform energy loss in sensor
- drift of created charge carriers in planar electric field
- movement of e-h pairs in magnetic field (Lorentz shift)
- diffusion
- cross-talk due to interstrip capacitance:

$$Q_{\text{neib strip}} = \frac{Q_{\text{strip}}C_{\text{i}}}{C_{\text{c}} + C_{\text{i}}};$$

modeling of the read-out chip

Simplified double-sided silicon microstrip detector layout.

< 同 ▶

- non-uniform energy loss in sensor
- drift of created charge carriers in planar electric field
- movement of e-h pairs in magnetic field (Lorentz shift)
- diffusion
- cross-talk due to interstrip capacitance
- modeling of the read-out chip:
 - noise: + Gaussian noise to the signal in fired strip;
 - threshold;
 - digitization of analog signal;
 - time resolution;
 - dead time.

STS-XYTER read-out chip for the CBM Silicon Tracking System.

▲ 분 ▶ 분 분 ● 9 < @</p>

Residuals comparison for 2 CPFAs: 2-strip clusters

Ideal detector model & uniform energy loss. Error bars: RMS of the residual distribution. $q_{1,2}$ – measured charges on the strips.

▲ 王 ► 王 ► ○ < ○

< □ > < 同 >

Unbiased cluster position finding algorithm (CPFA), n-strip clusters

formula for unifrom energy loss:

$$x_{\rm rec} = 0.5 (x_1 + x_n) + \frac{p}{2} \frac{q_n - q_1}{q},$$

$$q = \frac{1}{n-2} \sum_{i=2}^{n-1} q_i;$$

formula for **non-uniform** energy loss (head-tail $algorithm^{1}$):

$$x_{\rm rec} = 0.5 (x_1 + x_n) + \frac{p}{2} \frac{\min(q_n, q) - \min(q_1, q)}{q}$$

 $^{1}\,$ R. Turchetta, "Spatial resolution of silicon microstrip detectors", 1993

< ロ > < 目 > < 目 > < 目 > < 目 > < 目 > < □ >

Unbiased cluster position finding algorithm (CPFA), n-strip clusters

formula for unifrom energy loss:

$$\begin{aligned} x_{\rm rec} &= 0.5 \left(x_1 + x_n \right) + \frac{p}{2} \frac{q_n - q_1}{q} \\ q &= \frac{1}{n-2} \sum_{i=2}^{n-1} q_i; \end{aligned}$$

formula for non-uniform energy loss (head-tail $algorithm^{1}$):

$$x_{\rm rec} = 0.5 (x_1 + x_n) + \frac{p}{2} \frac{\min(q_n, q) - \min(q_1, q)}{q},$$

 $^{1}\,$ R. Turchetta, "Spatial resolution of silicon microstrip detectors", 1993

Residuals for 3-strip clusters

Estimation of hit position error

Hit position error:
$$\sigma^2 = \sigma_{alg}^2 + \sum_i \left(\frac{\partial x_{rec}}{\partial q_i}\right)^2 \sum_{sources} \sigma_j^2$$
,

 $\sigma_{\rm alg}$ – an error of the unbiased CPFA:

$$\sigma_1 = \frac{p}{\sqrt{24}}, \qquad \sigma_2 = \frac{p}{\sqrt{72}} \frac{|q_2 - q_1|}{\max(q_1, q_2)}, \qquad \sigma_{n>2} = 0.$$

 σ_j – errors of the charge registration at one strip, among them already included:

•
$$\sigma_{\text{noise}} = \text{Equivalent Noise Charge;}$$

• $\sigma_{\text{discr}} = \frac{\text{dynamic range}}{\sqrt{12} \text{ number of ADC}};$

σ_{non-uni} is estimated assuming:

- registered charge corresponds to the most probable value of the energy loss;
- incident particle is ultrarelativistic ($\beta \gamma \gtrsim 100$).

• $\sigma_{\rm diff}$ is negligible in comparison with other effects.

< ロ > < 目 > < 目 > < 目 > < 目 > < 目 > < □ >

Error due to non-uniform energy loss

The contribution from the non-uniformity of energy loss is more difficult to take into account because the actual energy deposit along the track is not known. The following approximations allow a straightforward solution:

- the registered charge corresponds to the most probable value (MPV) of energy loss;
- the incident particle is ultrarelativistic ($\beta \gamma \gtrsim 100$).

The second assumption is very strong but it uniquely relates the MPV and the distribution width (Particle Data Group)

$$MPV = \xi[eV] \times \left(\ln \left(1.057 \times 10^6 \xi[eV] \right) + 0.2 \right).$$

Solving this with respect to ξ gives the estimate for the FWHM (S. Merolli, D. Passeri and L. Servoli, Journal of Instrumentation, Volume 6, 2011)

$$\sigma_{\rm non} = w/2 = 4.018\xi/2.$$

Hanna Malygina: Hit position error in CBM-STS

< ロ > < 目 > < 目 > < 目 > < 目 > < 目 > < □ >

1-strip clusters: why not $\sigma_{method} = p/\sqrt{12}$?

In general, for all track inclinations:

$$N = \int_{x_{in}} \int_{x_{out}} P_1(x_{in}, x_{out}) dx_{in} dx_{out} = p^2;$$

$$\sigma^2 = \frac{1}{N} \int_{x_{in}} \int_{x_{out}} P_1(x_{in}, x_{out}) dx_{in} dx_{out} \Delta x^2 = \frac{p^2}{24}.$$

0

Particullary, for **perpendicular** tracks: $x_{in} = x_{out}$

$$\blacktriangleright N = \int_{x_{in}} P_1(x_{in}, x_{out}) dx_{in} = p;$$

$$\bullet \quad \sigma^2 = \frac{1}{N} \int\limits_{x_{in}} P_1(x_{in}, x_{out}) dx_{in} \Delta x^2 = \frac{p^2}{12}$$

Hanna Malygina: Hit position error in CBM-STS