

DiRich Readout Electronics for HADES, CBM and PANDA

Jan Michel - Goethe Universität Frankfurt

The RICH detectors HADES RICH

- 1.2 m² detector surface - 28,000 channels

Csl cathode to be replaced by PMT

CBM RICH

- 2.8 m² detector surface
- 60,000 channels
- 10 MHz collision rate
- up to 200 GBit/s

The current read-out plane of the HADES RICH with electronics

CAD model of the CBM RICH height 5 meter

3 similar detectors

Panda DIRC

Same scheme is planned for the Panda Barrel DIRC

- MCP-PMT (better timing, magnetic fields, 2x smaller signal)
- 11,000 channels
- similar rates to CBM

Drawing of the PANDA Barrel DIRC including electronics

Design Policy

all electronics fit to back of PMTs small modules for flexibility use dedicated, discrete amplifiers in-FPGA time measurement low power to ease cooling modular design to separate functions use space efficiently as few cables as possible versatile to fit to all experiments

Design Ideas

1 solution

Combines 6 PMT with all electronics to one read-out module

- all electrical connections, no active components
- light & gas-tight shield
- complex design due to number of connections
- mix of analog and digital signals

Backplane

- DC/DC converters to produce all required voltages
- Option: direct supply without converters for noise reduction (to be quantified)
- Voltage and current monitoring
- Feedthrough for HV
- Power dissipation: about 25 W per module
- Total power consumption: about 2 kW (HADES)

Power Board

- Lattice ECP3-150 FPGA
- Bi-directional links to all 12 front-ends
- Event data is merged into one packet
- Optical link to central DAQ 2.4 GBit/s
- Inputs for external clock and reference time
- Output for trigger signal to run
 DAQ on any coincidence
 or pixel multiplicity

Rate Capabilities

- Electronics > 5 MHits/channel
- Data links > 20 MHits/module
 - optional trigger windows

Higher Rates in CBM / PANDA

- CBM: up to 200 kHits/channel or 60 MHits/module
- data rates exceed 5 GBit/s per module in central parts
- Concentrator replaced independently with new module with 1/2 4.8 GBit/s links

Concentrator Board

Front-end Board

- Each PMT is read out by two front-end cards
- 32 analog channels
- Local linear voltage regulators
 - ultra-low drop (< 40 mV)
- 47 x 100 mm

FPGA (Lattice ECP5-85)

- Thresholds
 - internal Delta-Sigma-DAC + Filter
- Discrimination
 - comparator in LVDS receivers
- Time Measurement
- DAQ logic Read-out, Triggering

Dirich Board

- small footprint: 12 x 2.7 mm²
- mostly 0201 components
- 12 mW @ 1.1 V
- amplification ~ 20 30 amplitude dependent
- channels galvanically isolated
- threshold ~ 1 mV of input

Analog Stage

Performance

The new HADES RICH backplane fitted with 74 read-out modules

Integration

Cooling

Electronics for the RICH and DIRC detectors at FAIR applicable with small modifications for the HADES, CBM and PANDA experiments

small, low-power discrete amplification and shaping stage has been designed

First in-system tests have been done, large scale and in-beam tests to be done in next months

All read-out, control, software and TDC functions are based on developments made within the TRB community by various people and institutions.

Time Measurement

TDC is ready again.