Event reconstruction and selection in high-rate heavy-ion reactions in the CBM experiment at FAIR

> Maksym Zyzak¹ (for the CBM collaboration)

1 – GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

DPG Spring Meeting, Münster 28.03.2017

für Bildung

und Forschung

Content

- CBM experiment: physics case and challenges.
- Event based physics observable performance:
 - strange particles;
 - dileptons;
 - open charm;
 - collective effects.
- Full event topology reconstruction.
- Time-based reconstruction:
 - time-based track reconstruction;
 - time-based track fit;
 - time-based short-lived particle reconstruction.

Tasks of the CBM experiments

Baryonic matter

CBM physics case:

- hadronic-partonic and (or) chiral phase transition at high baryon chemical potential and search for the critical endpoint;
- equation of state of nuclear matter and degrees of freedom at these densities;
- hypernuclei and heavy multi-strange objects, if such objects exist;
- properties of hadrons in dense baryonic matter and the possible modification of them;
- charm production at threshold beam energies and charm properties in dense baryonic matter.

Main physics observables:

- the excitation function of yields, spectra, and collective flow of:
 - strange particles;
 - particles with charm quarks;
 - dileptons.
- in-medium mass distribution of vector mesons;
- event-by-event fluctuations of conserved quantities;
- hypernuclei, strange dibaryons and heavy multi-strange short-lived objects.

Challenges in CBM

- On-line reconstruction at the on-line farm with 60000 CPU equivalent cores.
- High speed and efficiency of the reconstruction algorithms are required.
- The algorithms have to be highly parallelised and scalable.
- CBM event reconstruction: Kalman Filter and Cellular Automaton.

- CBM future fixed-target heavy-ion experiment at FAIR, Darmstadt, Germany.
- 10⁵-10⁷ collisions per second.
- Up to 1000 charged particles/collision.
- Free streaming data.
- No hardware triggers.
- On-line time-based event reconstruction and selection is required in the first trigger level.
- Triggering is required on extremely rare probes (like one $\overline{\Omega}^+$ per 10⁶ collisions).

Olga Bertini, HK 9.2 Mo 17:00 Jörg Lehnert, HK 30.1 Mi 16:45

KF Particle Finder block-diagram

PID in CBM

ToF: hadron identification

RICH: hadron identification

< 2.0 GeV/c

d 4 2

60

80

100

 $\langle TRD dE/dx \rangle$ (keV·cm²/g)

120

140

160

Combined ToF-TRD PID

PID detectors:

- ToF (Time of Filght) hadron identification;
- RICH (Ring Imaging CHerenkov detector) electron identification;
- TRD (Transition Radiation detector) electron and heavy fragments identification.

PID detectors of CBM will allow a clear identification of charged tracks.

> Viktor Klochkov, HK 2.3 Mo 17:30 Etienne Bechtel, HK 2.6 Mo 18:15

20

40

TOF m² (GeV/*c*²)²

Reconstruction of strange particles

AuAu, 10 AGeV, 5M central UrQMD events, realistic PID, event-based

Mathematically correct procedures allow to collect spectra with high efficiency and signal to background ratio.

Iouri Vassiliev, HK 47.2 Do 17:15 Pavel Kisel, HK 58.3 Fr 14:45 Hamda Cherif, HK 47.8 Do 18:45

Dimuon spectra for low mass vector mesons

Dielectron spectra for low mass vector mesons

2015-12-01 20:31:23

Florian Seck, HK 40.5 Do 15:00 Ievgenii Kres, HK 21.3 Di 14:45

Open charm reconstruction

	D ⁰ + D ⁰	D++D-	D _s +	Λ_{c}^{+}
decay channel	<u>K</u> -π ⁺	$K^-\pi^+\pi^+$	$K^-K^+\pi^+$	р К -л+
M _{SM (J.Cleymans)}	4.5·10 ⁻⁶	2.2.10-6	1.1.10-6	3.6.10-6
BR(%)	3.8	9.5	5.3	5.0
geo. acc.(%)	30	40	33	70
z-resolution (µm)	40	48	50	60
total eff. (%)	1.8	2.3	0.5	0.05
$\sigma_{\rm m}({\rm MeV/c^2})$	12	~12	~12	~12
S/B _{2σ}	0.8/0.4	-	-	-
Yield/10 weeks, 0.3 MHz IR	1620	2620	160	50

Open charm reconstruction:

- Fast tracking (STS) + decay daughter identification (ToF)
- Displaced vertex reconstruction (MVD)
- Topology reconstruction algorithm (KF Particle Finder)

Physics case at SIS100 energy: Proton beams up to 30 GeV

- Excitation function of charm (production mechanism)
- Charm propagation in cold nuclear matter
- Light nuclei (Ni) beams up to 15 GeV
- Charm production & propagation in hot nuclear matter

Extraction of the signal spectra

Extracted spectra for Λ hyperon in 5M central AuAu UrQMD events at 10 AGeV

- Several independent methods for the signal spectra extraction are implemented.
- Methods show similar results.
- The signal distributions are nicely described by the extracting spectra.

Iouri Vassiliev, HK 47.2 Do 17:15 Pavel Kisel, HK 58.3 Fr 14:45

Reconstruction of collective effects

Reconstructed impact parameter is consistent with **simulated** values

Correlation of the simulated impact parameter (b_{MC}) and track multiplicity allow reconstruction of b

Reconstructed proton v_2 is consistent with **simulated** values

28 March 2017

×10⁶ Mean 0.00012 ×10⁶ -3.1e-05 ×10⁶ 0.00042 Mean Mean Entries Entries Entries Entries 0.0057 Sigma 0.02 Sigma Siam 0.042 -0.05 0.05 -0.05 0.05 0.15 0.15 -Ŏ.15 $\rho_{\mathbf{p}_x} = \mathbf{p}_x^{\text{reco}} - \mathbf{p}_x^{\text{mc}} [\text{GeV/c}]$ $\rho_v = \mathbf{x}^{reco} - \mathbf{x}^{mc} [cm]$ $\rho_{\rm E} = \mathbf{E}^{\rm reco} - \mathbf{E}^{\rm mc} [\text{GeV/c}^2]$ χ^2/NDF Mean 0.0064 Mean -0.0029 Mean 0.016 Entries Entries Entries Entries 1.3 1.2 1.1 Siama Sigma 0.5 Pull p Pull E Pull x prob R [cm] 50 Total $\{p\pi^{-}\}$ 10⁶ distribution 40 10⁵ STS 30 10⁴ 10³ 20 10² 10 10 Pipe 0 20 **40** 60 80 Z [cm]

AuAu, 10 AGeV, 5M central UrQMD events, realistic PID

- The fit quality is demonstrated at Λ hyperon.
- Y and Z components are similar to X.
- Correct mathematics, as a result, correct pulls (unbiased, width about 1), χ^2 and flat prob (p-value) distributions.
- High quality of the reconstruction allow to perform the detector tomography.
- The vertices on the stations are due to the interaction of the primary particles with the material.

Physics coverage

Main physics observables are covered by the event based CBM reconstruction

0.2

Maksym Zyzak, DPG, Münster

Competition between particle candidates

- Idea: full event topology reconstruction in CBM.
- Primary particles are of the main physics interest.
- For reduction of the background a competition between K⁰_s and Λ candidates is organized based on the topology reconstruction and mass hypothesis.

Competition between K^{0}_{a} and Λ : Λ spectrum

AuAu, 10 AGeV, 10k mbias UrQMD events, realistic PID

- Topological cut allow to decrease the combinatorial background several times.
- Dominant background misidentified K^{0}_{s} and γ .
- Competition between K⁰_s and Λ candidates is organized: if both candidates are constructed and at least one lies within 3σ from the corresponding peak, only the closest candidate is stored.

Full event topology reconstruction for physics analysis

AuAu, 10 AGeV, 5M central UrQMD events, realistic PID

Full event topology reconstruction \rightarrow clean probes of collision stages.

100 AuAu mbias events at 10 AGeV at 10^7 Hz

Input hits

- Free streaming data.
- Measurements in this case will be 4D (x,y,z,t).
- Reconstruction of time slices rather than events will be needed.

Reconstructed tracks clearly represent groups, which correspond to the original events

4D Track reconstruction with the CA Track Finder

Total time - 84 ms

- The full chain for the time-based simulation and reconstruction is implemented for the STS detector.
- The 4D CA track finder is developed.
- The 4D CA track finder shows practically the same efficiency as the 3D track finder.
- It is fast and scalable.

Valentina Akishina, HK 12.5 Di 12:15

 $(x, y, t_x, t_y, q/p) \rightarrow (x, y, t_x, t_y, q/p, t)$

Time is added to the track fit:

- The vector of parameters and its covariance matrix are extended with time.
- Propagation and Kalman filter are extended to take time into account.
- Fit shows correct results: high resolution and pulls close to 1.

19/22

4D physics analysis

10 MHz, AuAu, 10 AGeV, 300k mbias UrQMD events, ideal PID

103		103				KÜS	Λ	Λ	E
	$-K_s^o \sigma = 4.3 \text{ MeV/c}^2$ S/B = 9.16		-Λ σ = 1.8 MeV/c ² S/B = 12.2		Emethod, %	68.6	61.2	67	46.7
E		E		3D 3D	ε _{4π} , %	20.7	19.4	28	10.5
10-	K_s^0 →π ⁺ π ⁻	50 -	$\Lambda \rightarrow p\pi^{-}$		S/B	10.6	23.7	12.7	21.8
				Ηz	Emethod, %	68.5	62.0	62	45.2
				1 7	ε4π, %	21.1	20.6	32	11.7
00.	5 0.6 m $\{\pi^+\pi^-\}$ [GeV/c ²]	0. <u> </u>	$\frac{1.2}{m \left\{ n\pi^{3} \right\} \left[\text{GeV}/c^{2} \right]}$	o.	S/B	9.8	12.9	10	14.2
	$-\overline{\Lambda} \sigma = 1.7 \text{ MeV/c}^2$		$\frac{1}{100} = 2.6 \text{ MeV/c}^2$	N	Emethod, %	67.5	60.9	59	46.0
	S/B = 8.42	tries	S/B = 11.7	Σ	ε4π, %	19.4	18.7	26	10.6
u -	<u> </u>	표 100-			S/B	9.3	12.5	10	12.3
10-	$\Lambda \rightarrow \overline{\mathbf{p}}\pi^+$	-	$\Xi \rightarrow \Lambda \pi$	Ηz	Emethod, %	66.8	60.0	64	41.8
		-		Σ	ε4π, %	17.6	16.7	28	8.2
		0	marine to the stand of the stand	10	S/B	9.2	12.2	8	11.7
1.1	$m_{inv} \{ \overline{p} \pi^+ \} [GeV/c^2]$	1.0	$\mathbf{m}_{inv} \{\Lambda \pi\} [\text{GeV/c}^2]$						

- 4D reconstruction chain from hit production to physics analysis level is established.
- Ideal (Monte Carlo) PID is used for track identification.
- Particle reconstruction performance is stable up to 1 MHz interaction rate.
- Investigation of the events overlapping in time is in progress.
- Extreme case of 10 MHz interaction rate will require further include of the information from fast detectors (ToF) and multi primary vertex analysis.

Valentina Akishina, HK 12.5 Di 12:15

- Reconstruction on the event-by-event level in CBM is fully established.
- Main physics observables are covered, reconstruction procedures demonstrate high quality.
- Full event topology reconstruction is under development.
- Time-based 4D track finder, track fitter and event builder are further developed.
- 4D reconstruction is efficient, fast and scalable.
- Time-based physics analysis is under development.
- Time-based PID and multi primary vertex analysis are in progress.

Reconstruction related talks

Talks:

- HK 2.3 Mo 17:30 Viktor Klochkov, "Performance of charged pions, kaons, protons and their anti-particles identification in the CBM experiment"
- HK 2.6 Mo 18:15 Etienne Bechtel, "Performance studies for electron measurement with the CBM-TRD"
- HK 9.5 Mo 18:00 Hanna Malygina, "Hit position error estimation for the CBM Silicon Tracking System"
- HK 12.2 Di 11:30 Artemiy Belousov, "Geometry independent Kalman filter based track fit"
- HK 12.5 Di 12:15 Valentina Akishina, "Performance of 4-Dimensional Cellular Automaton Track Finder in CBM"
- HK 21.3 Di 14:45 Ievgenii Kres, "Reconstruction of neutral pions at CBM-RICH detector via conversion"
- HK 33.3 Mi 17:30 Timur Ablyazimov, "Time based track reconstruction in the CBM experiment"
- HK 33.4 Mi 17:45 Grigory Kozlov, "Speed up approaches in the Cellular Automaton (CA) track finder"
- HK 40.5 Do 15:00 Florian Seck, "Thermal dilepton emission as a fireball probe"
- HK 47.2 Do 17:15 Iouri Vassiliev, "Multi-strange Hyperons and Hypernuclei reconstruction at the CBM experiment"
- HK 47.8 Do 18:45 Hamda Cherif, "Online reconstruction of multi-strange hyperons with the CBM experiment"
- HK 58.3 Fr 14:45 Pavel Kisel, "Reconstruction of short-lived particles with neutral daughter by the missing mass method"

Posters:

- HK 27.24 Di 16:45 Daniel Giang, Frankfurt University, "Performance studies for J/Psi measurements in p+A collisions with CBM"
- HK 27.24 Di 16:45 Susovan Das, Tübingen University, "Track-based Misalignment Corrections for the CBM Silicon Tracking Detector"