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The CBM Experiment at FAIR
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CBM (Electron-Hadron Setup)

• Fixed target heavy ion 
experiment


• Under construction (time 
frame similar to LHC Run3)


• Physics goal: 
exploration of the QCD 
phase diagram at highest 
baryon densities and 
moderate temperatures


•   Ekin = 2.0 – 35 A GeV 
√sNN = 2.7 – 8.3 GeV


• 105 – 107 Hz 
interaction rates 


• Modular detector setup

FAIR

Darmstadt, 
Germany
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CBM Challenges
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Central Au+Au collision at 25 AGeV   
160 p, 400 π-, 400 π+, 44 K+, 13 K-

UrQMD + GEANT
Reconstructed event in STS

• Extreme reaction rates up to 10 MHz


• Up to 1000 charged tracks in aperture


• Hit densities up to 1/mm2


• High-precision vertex reconstruction


• Identification of leptons and hadrons 

• No conventional trigger architecture possible 


→ Self-triggering readout electronics


• Full online event reconstruction needed 

→ Event selection exclusively done in a high-
performance computing cluster

CBM Setup



Jan de Cuveland – The CBM First-level Event Selector – DPG Spring Meeting 2017 – Münster, Germany, 2017-03-28

FAIR Data Center "Green IT Cube"
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• Outline

• 768 water-cooled racks in 

3-D architecture 
• 1 floor reserved for CBM 

• Location of CBM 
FLES


• Cost-efficient 
infrastructure sharing 

• Maximum CBM online 
computing power only 
needed in a fraction of 
time 
→ combine and share 
computing resources 

• Fiber lengths to 
experiment site 
approx. 700 m

~350 m linear distance 

~700 m cable length
CBM 

Service 
Building

FAIR Data Center


In operation since Jan 2016

Consequences 
• Transmit >10 TBit/s over 

700 m distance 
•Need single-mode optics 
• Increased latency
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CBM Readout Structure
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Detector Front-ends 
• Self-triggering front-end 
• 107 events/s 
• Data push architecture 
• All hits shipped to FLES

FLES Input Interface 
• FPGA-based PCIe board 
• Long-distance links to 

front-end  
• Preprocessing and 

indexing for timeslice 
building

High-throughput event 
building 
• >1 TByte/s input data rate 
• ~ 1000 input streams 
• RDMA-enabled network 
• Deliver global timeslices 

to reconstruction code

Online Event Selection 
• HPC processor farm with FPGAs, 

GPUs and fast interconnect 
• ~ 60.000 cores 
• Fast, vectorized many-core track 

reconstruction algorithms 
• Full event reconstruction

CBM
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CBM Online Computing
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Detector Front-ends 
• Autonomous hit 

detection and zero-
suppression 

• Associate time 
stamp with each hit, 
aggregate data

Data Processing Board 
(DPB) 
• Local data preprocessing: 

Feature extraction, time sort 
messages, data reformatting, 
merging input streams 

• Convert to global time

FLES Nodes 
• Calibration and global feature extraction 
• Tracking in 4 dimensions (including time) 
• Full reconstruction, associate hits with events 
• Identification of leptons and hadrons 
• High-precision vertex reconstruction  
• Event selection

FLES Interface 
Board (FLIB) 
• Time 

indexing and 
buffering of 
microslices

CBM
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First-level Event Selector (FLES) Architecture

• FLES is designed as an HPC cluster

• Commodity PC hardware 
• GPGPU accelerators 
• Custom input interface 

• Total input data rate >1 TB/s 


• InfiniBand network for timeslice building

• RDMA data transfer, very convenient for timeslice building 

• Flat structure w/o dedicated input nodes  
Inputs are distributed over the cluster


• Makes use of full-duplex bidirectional InfiniBand bandwidth 
• Input data is concise, no need for processing before timeslice building 

• Decision on actual commodity hardware components as late as possible

• First phase: full input connectivity, but limited processing and networking
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Alternative DAQ/FLES Architecture – Under Consideration

• Combine DPB and FLIB to single FPGA board


• Long-range connection to Green Cube via standard network 
equipment (e.g., long-range InfiniBand) instead of custom optical links
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comp. 
node

GBT PCIe InfiniBand

Green Cube

Interface to standard 
hardware via PCIe

FLES entry nodes in 
CBM building

Long-range 
InfiniBand
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FLES Timeslice Building

• Need global data intervals for efficient event reconstruction and selection


• But: data input to FLES is distributed across hundreds of input nodes (IN)


• Conventional event building not applicable due to free-running detectors


• Timeslice building: combine matching time intervals from all input links to 
one "timeslice" (processing interval) on one particular compute node (CN)


• Distribute different processing intervals to different compute nodes
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Overlapping Timeslices 
• Each timeslice is analyzed 

independently 
• Probability for events 

across timeslice borders 
• Allow limited timing 

calibration in front-end 
• Solution: duplicate data in 

overlap region and 
associate with both 
timeslices 

• Use COG in time to avoid 
duplicate event detection
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Microslice-based Timeslice Building

• Introduce microslice containers

• Constant in experiment time 
• Variable in data size 
• Built by detector-specific DPB design 
• Enable timeslice building 

• Subsequent microslices get combined to one timeslice

• Allows timeslice overlap 
• Allows subaddressing for two-staged timeslice building  

• Example: each microslice ~10 µs in experiment-time  
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Benefits

• Efficient, data agnostic data 

management 
• Decouples FLES data 

management and detector 
data format 

• Full time-indexed data access 
for analysis tasks 

• Allows zero copy timeslice 
building

header t=n d0 d1 d2 d3 d4

1 µs data segment
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FLES Data Management Framework
• RDMA-based 

timeslice building 
(flesnet)


• Works in close 
conjunction with FLIB 
hardware design


• Paradigms:

• Do not copy data in 

memory 
• Maximize throughput 

• Based on microslices, 
configurable overlap


• Delivers fully built 
timeslice to 
reconstruction code
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• Prototype implementation available


• C++, Boost, IB verbs 


• Measured flesnet timeslice building (8+8 nodes, including ring buffer 
synchronization, overlapping timeslices):

• ~5 GByte/s throughput per node


• Prototype software successfully used in several CBM beam tests

SHM

Reco/
Ana

HCA HCA

SHM
IB Verbs

TS-
Building 

CN
IB Verbs

TS-
Building 

IN
Device Driver

FLIB
Server

FLIB  FEE FL
IM

• 10 GBit/s custom 
optical link

• Direct DMA to InfiniBand send buffers 
• Shared memory interface

• Timeslice building 
• InfiniBand RDMA, true zero-copy

• Indexed access to 
timeslice data
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FLES Input Interface

• FPGA-based PCIe board: FLIB

• Consumes microslices received from DPBs 
• Prepares and indexes microslices for timeslice building 
• Transfers microslices and index data to PC memory 

• Custom PCIe DMA interface


• Optimized data scheme for zero-copy timeslice building


• Common HDL interface module in front-end


• Status

• Complete design available, implemented on HTG-K7 development board 
• Combined FLIB and DPB functionalities for beam test usage available 
• Successfully used in numerous setups 

(including CERN SPS beam test in 2016)
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FLES Input Data Path

• Full offload DMA engine


• Transmit microslices via PCIe/DMA directly to userspace buffers

•Buffer placed in Posix shared memory, can be registered in parallel for InfiniBand RDMA 

• Pair of ring buffers for each link

• Data buffer for microslice data content 
• Descriptor buffer for index table and microslice meta data
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Microslice 
• Timeslice substructure 
• Constant in experiment time 
• Allow overlapping timeslices
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RDMA Timeslice Building

• Two pairs of ring buffers for each input link

• Second buffer: index table to variable-sized data in first buffer 

• Copy contiguous block of microslices via RDMA (exception: borders)


• Lazy update of buffer status between nodes, reduce transaction rate
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Interface to Online Reconstruction Code

• Basic idea: For each timeslice, an instance of 
the reconstruction code...


• ...is given direct indexed access to all corresponding data 
• ...uses detector-specific code to understand the contents 

of the microslices 
• ...applies adjustments (fine calibration) to detector time 

stamps if necessary 
• ...finds, reconstructs and analyzes the contained events 

• Timeslice data management concept

• Timeslice is self-contained 
• Calibration and configuration data distributed to all nodes 
• No network communication required during reconstruction 

and analysis
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• Two-dimensional indexed access to microslices 
• Overlap according to detector time precision 
• Interface to online reconstruction software
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Online Event Selection

16

Number of Logical Cores
0 5 10 15 20

Sp
ee

d-
up

0

2

4

6

8

10 CA Track Finder
1.  Initialisation
2.  Triplets Construction

3.  Tracks Construction
4.  Final Stage

Parallel speed-up of CBM reconstruction [I. Kisel]

• Full online event reconstruction 
prior to selection


• High-throughput, up to 107 events/s


• No event separation by previous trigger


• Overlapping events


• Reconstruction in 4-D (including time)


• Same code in online and offline analysis


• Extensive use of vectorization (SIMD) and 
many-core architectures (e.g., GPU)

Massive parallelization 
• Many independent 

processing nodes 
• Multiple timeslices 

simultaneously per node 
• Multi-threaded, vectorized 

reconstruction code

Provided by 
framework
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RDMA transport 
implementation

Modular Timeslice Building Implementation

• FLES design principle: Work towards final 
system


• Create software with the large setup in mind 
• Then adapt for small test setups 

• Data transport software divided into modules

• Can select different transport (networking) code 
• Shared memory interfaces stay the same 

• Current transport options:

• RDMA/Verbs, Libfabric, ZeroMQ 
• RDMA and zero copy features used if available 
• Support for almost any network
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Timeslice Building Transport Options
• Libfabric supports modern interconnect capabilities 


• RDMA 
• Zero-copy data transfer 

• Libfabric micro-benchmark over 384 nodes 
achieved ~646 GB/s 
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Transport Hardware Performance
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RoCE high

TCP 
(via SoftiWARP) reduced

Ethernet 
(via Soft RoCE) reduced

Libfabric
RDMA-capable high

any network reduced

ZeroMQ any TCP network reduced

MPI any network high

Standard

New: Libfabric transport 
• Under active development 
• Supports modern 

interconnect capabilities 
• Libfabric micro-benchmark 

over 384 nodes 
achieved ~646 GB/s

New: ZeroMQ 
transport 
• Alternative for 

small setups
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FLES Network Performance Study
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Node subset selection for full bisectional bandwidth (54.54 Gbit/s per node)

InfiniBand FDR network demonstrator

• Standard routing pattern 
suboptimal for continuous all-
to-all communication 


• Optimized routing scheme 
leads to excellent performance 
(>5 GB/s per node) 
(tested on for 24 nodes using 
InfiniBand verbs and custom 
MPI benchmark)
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FLES Readout at SPS-2016

• First common FLES 
readout of multiple CBM 
detector systems


• Readout chain from 
DPB to timeslice like 
planed for the final 
system


• 206 „physics“ runs in 3 
periods


• 176 successful runs 
with a total of 14 TB 
timeslice data
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Summary

• Compressed Baryonic Matter (CBM) experiment at FAIR

• High event rates (107 Hz), complex global triggers 
• Self-triggered detector front-ends 
• Data push readout architecture 

• Central physics selection system: First-Level Event Selector (FLES)

• HPC processor farm including FPGAs (at input stages) and heterogenous many-core architectures (e.g., GPUs) 
• >1 TByte/s input data stream 
• Timeslice building in RDMA-enabled network 
• 4-D event reconstruction using fast, vectorized track reconstruction algorithms 

• Online computing architecture – status

• Architecture still being refined towards final system 
• Aim for first phase: full input connectivity, but limited processing and networking 
• Demonstrator implementations available, data chain field-tested in beam tests
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