

Radiation damage caused by neutron capture in boron doped silicon pixel sensors

Benjamin Linnik, Tobias Bus, Michael Deveaux, Dennis Doering, Ali Yazgili for the CBM-MVD collaboration

> 27.3.2017 Institut für Kernphysik, Goethe University, Frankfurt am Main

Study matter at extreme conditions by reconstructing secondary vertices of dileptons and open charm particle

Need:

- Good spatial resolution
- High granularity
- Vacuum compatible design
- Radiation tolerant
- Low material budget

MAPS:

- CMOS sensors have low material budget
- Excellent spatial resolution
- Good time resolution
- Radiation tolerant

How do we test for radiation hardness?

Is the NIEL hypothesis valid for P-doped sensors?

Boron (¹⁰B) is known to:

- Capture thermal neutrons with huge cross section (~1000 b)
- Decay $n+^{10}B = 7Li + ^{4}He + 3 MeV$
- \Rightarrow Fast ions are created in Si
- \Rightarrow Additional bulk damage is created

CMOS Monolithic Active Pixel Sensors

GOETH

- Are being optimized to tolerate extremely high radiation doses (ionizing and non-ionizing).
- <u>Based typically on P-doped silicon</u>
 => Contains Boron

Does ¹⁰B cause sizable additional radiation damage w.r.t standard NIEL model?

Theoretical estimate

Depth vs. Y-Axis

-- Target Depth --

From ion energy to NIEL

Idea: Compare number of vacancies:

- caused by fission ions (unknown hardness factor)
- caused by protons (known hardness factor)

Tool: SRIM (software and references: <u>www.srim.org</u>)

Simulates flight of ions in matter (~MeV energies) \Rightarrow Simulate vacancies cause by p, ⁴He and ⁷Li

Results:

	Vacancies	
p (30 MeV)	0.7 / 40µm 🔸	-
⁴ He	277 / ion	
⁷ Li	613 / ion	

40µm Si target: Avoid energy loss => const. hardness factor

Result after normalization:

¹⁰B – fission => additional radiation damage in highly doped structures

DPG 2017

Does boron decay additionally damage the sensor?

In first order:

- Lowly doped sensitive volume not affected
- Ions are created in highly doped volumes.

Penetration depth of ions (SRIM)

Possible damage mechanism:

- Ions are created in P++
- Ions enter sensitive volume, create sizable (?) damage here

Likely:

- Only part of sensitive volume affected
- "Effective" hardness factor depending on sensor geometry, etc...

How do we test for additional damage?

Idea: Compare radiation damage caused by fast and cold neutrons

MEDAPP

- Direct ²³⁵U fission neutrons
- 99% of all neutrons >100 keV

PGAA

Cold neutrons 1.8 x 10⁻³ eV

- Sensor: MIMOSA-19, IPHC, Strasbourg
 - Design: AMS 0.35 LR, Year 2006
 - Pixel: 12 µm pitch
- Doping assumption: ~ 10¹⁵ (*epi*), ~10¹⁹(*substrate*)
 => Not depleted, charge collection by diffusion

Observables: Charge collection efficiency

Sensor illuminated with ¹⁰⁹Cd (22.1 keV X-ray), detect clusters

Response differs fundamentally between cold ⇔ 1MeV Neutrons Effective hardness factor cannot be extracted

Potential explaination:

Intense acceptor removal (factor x4 from P=10¹⁵/cm³)

- \Rightarrow Additional depletion improves CCE, dominates trapping
- ! No significant acceptor removal observed with 1 MeV neutrons for <2x10¹³n_{eo}/cm²

Does ¹⁰B fission cause sizable rad. damage in P-doped Si?

Theoretical estimate:

- P>10¹⁷/cm³ => Expect additional damage w.r.t standard NIEL curve
- Fission ions may damage lowly doped silicon indirectly due to 7µm range

Experimental study (MIMOSA-19, ~10¹⁵/cm³ epi layer, ~10¹⁹/cm³ substrate):

Observation:

CCE:

- Cold neutrons cause strong acceptor removal, CCE increases
- Acceptor removal exceeds finding for 2x10¹³n_{eq}/cm² (1MeV)

Preliminary conclusion:

- ¹⁰B fission seems to cause rad. damage beyond standard NIEL
- Risk of unexpected effects in case of high thermal neutron doses.