The Silicon Tracking System of the CBM Experiment at FAIR

Olga Bertini for CBM collaboration 27.03.2017

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Facility for Antiproton and Ion Research

FAIR phase 1, first beam in 2025 FAIR phase 2

CBM experiment @ SIS100

HK 30.1 We 16:45

The Compressed Baryonic Matter experiment at FAIR Jörg Lehnert, GSI, Darmstadt

Experimental challenge

central Au+Au, 8 GeV/nucleon

Experimental requirements

- high-rate collision environment: $10^5 10^7/s$ (AA), up to $10^9/s$ (pA)
- radiation tolerance up to $10^{14} n_{eq}/cm^2$
- free streaming front-end electronics with time-stamp resolution $\simeq 5 \mathrm{ns}$
- momentum resolution: $\delta p/p \simeq 1.8\%$ (p > 1 GeV/c, 1 Tm field)
- low material budget

Silicon Tracking System

Track reconstruction efficiency

STS design

- 8 tracking station
- geometrical acceptance: $2.5^{\circ} \le \theta \le 25^{\circ}$, $0.3 \text{m} \le z \le 1.0 \text{m}$
- material budget 0.3%-1% X_0 per station
- double-sided silicon microstrip sensors, spatial hit resolution $\simeq 25 \mu m$

Momentum resolution

STS integration concept

8 tracking station mechanical unit ladder

896 detector modules including:

- ullet ~ 900 double-sided microstrip sensors
- $\bullet~\sim 1.8 \text{M}$ readout channels
- $\bullet~\sim$ 14000 readout chips and ultra-thin readout cable stacks

Detector module assembly

12 cm sensor in bonding fixture

assembled dummy module

chip cables with STS-XYTER ASICs in front-end board

- 4-5 modules per ladder
- 32 tab bonded cables
- 16 chips, 8/side

Silicon microstrip sensors

n-side

- double-sided
- 1024 channels per side
- 58 μ m pitch
- 300 μm thickness
- stereo angle 7.5°(P-Side)

- dimensions:
 - $6 \times 2 \text{ cm}^2$
 - $6 \times 4 \text{ cm}^2$ • $6 \times 6 \text{ cm}^2$

 - 6 × 12 cm²
- 2nd metallization to interconnect short corner strips

Ultrathin microcables

Schematic side view of the microcable stack for one

CBM module

Microcables in electronic box

signal layer: 64 Al lines of 116 μ m pitch, 10 μ m thick on 14 μ m polyimide

Microcable demonstrator, length 60 cm. Top view

Material budget per cable stack: $0.228X_0$ (equivalent to 213μ m Si)

Front-End Electronics. STS-XYTER ASIC

channels	128, polarity $+/-$		
ADC range	16 fC, 5 bit		
power	< 10 mW/channel		
timestamp	< 5 ns resolution		
out interface	up to 5 $ imes$ 320 Mbit/s LVDS		
STS-XYTER v2	Sept. 2016		

- data driven architecture
- fast branch: time-stamp
- slow branch: signal digitization
- double-threshold discrimination: time stamp is vetoed if ADC produced no signal

HK 63.2 Fr 14:15

Test of the STS-XYTER v.2 frontend ASIC for the CBM Silicon Tracking System Adrian Rodriguez Rodriguez, Frankfurt University

Detector integration. Current engineering studies

Quarter-unit demonstrator

HK 9.6 Mo 18:15

Progress with System Integration of the CBM Silicon Tracking Detector Johann M. Heuser, GSI, Darmstadt

Detector integration. Cooling

 $\begin{array}{l} \text{Bi-phase CO}_2 \text{ cooling} \\ \text{STS electronics total power} \\ \text{dissipation: 42 kW} \end{array}$

TRACI XL: 1 kW cooling prototype

Prototype of cooling plate with integrated channels

HK 27.71 Tue 16:45

Investigation of CO2-based Cooling for the CBM Silicon Tracking System Kshitij Agarwal, Tübingen University

Quality Assurance

- Sensors
 - Visual inspection
 - Bulk properties tests: IV, CV
 - Strips quality tests:
 - pinhole test
 - strip leakage current
 - coupling capacitance
- Ultrathin microcables
- Front-End Electronics

Two QA centers in Germany

- GSI, Darmstadt
- Tübingen University

Positioning of the test needles on probe station for automatized strip

Quality Assurance. Visual inspection

Example detection of a scratch as seen in direct light source on CBM06 sensor (N-Side)

HK 35.8 We 18:30

Optical quality assurance procedures for the sensors of the CBM Silicon Tracking System Evgeny Lavrik, Tübingen University Example of comparison of the pinhole tests with vendor information for the latest prototype sensor CBM06

HK 35.7 We 18:15

Electrical quality assurance of silicon microstrip sensors for the CBM experiment laroslav Panasenko, Tübingen University

Quality Assurance. Database

Web-interface of STS QA database

FLUKA calculation of non-ionizing dose for 35 A GeV Au+Au collisions at SIS300

Charge collection efficiency results after irradiation up to $2\times 10^{14} n_{eq}/cm^2$

HK 36.3 We 17:15

Studies of radiation field impact on microstrip sensors for the CBM Silicon Tracking System **levgeniia Momot**, Frankfurt University

Test setup in the laboratory

Test setup in the laboratory

- ALIBAVA readout system
- Thermal enclosure with forced convection
- Plastic scintillator underneath
- ⁹⁰Sr radioactive source

Test setup of last in beam test at COSY

HK 9.3 Mo 17:30

Proton beam tests of silicon microstrip sensors for the CBM experiment Maksym Teklishyn, FAIR, Darmstadt

Conclusion

- STS concept has been developed.
- Building blocks are well defined.
- Components in preproduction phase:
 - sensors
 - microcables
 - front-end electronics
- Demonstrators to be delivered:
 - quater-unit
 - cooling prototype
- Development for the QA procedure are well defined.
- Production readiness toward 2018
- Installation in the cave in 2021.

mCBM setup will be assembeled in Cave C at GSI by the end of 2018.

HK 9.3 Mo 17:30	Proton beam	tests of silicon	microstrip sensors	for the CBM experimen	۱t
-----------------	-------------	------------------	--------------------	-----------------------	----

- HK 9.5 Mo 18:00 Hit position error estimation for the CBM Silicon Tracking System
- HK 9.6 Mo 18:15 Progress with System Integration of the CBM Silicon Tracking Detector
- HK 27.71 Di 16:45 Investigation of CO2-based Cooling for the CBM Silicon Tracking System
- HK 27.24 Di 16:45 Track-based Misalignment Corrections for the CBM Silicon Tracking Detector
- HK 27.54 Di 16:45 Construction of a neutron source for silicon detector irradiation
- HK 35.7 Mi 18:15 Electrical quality assurance of silicon microstrip sensors for the CBM experiment
- HK 35.8 Mi 18:30 Optical quality assurance procedures for the sensors of the CBM STS
- HK 36.3 Mi 17:15 Studies of radiation field impact on microstrip sensors for the CBM STS
- HK 63.2 Fr 14:15 Test of the STS-XYTER2 front-end ASIC for the CBM Silicon Tracking System

QGP phase diagram

- Nuclear matter formation at high baryon density and temperature
- Models predect 1st order phase transition with formation of mixed and exotic phases
- Existence of critical end-point

Experiments:

BES at RHIC, NA61 at CERN SPS, NICA at JINR and CBM at FAIR