
XL-th IEEE-SPIE Joint Symposium Wilga 2017 1/23

DMA implementations for FPGA-
based data acquisition systems

Presenter: Wojciech M. Zabołotny
Institute of Electronic Systems

Warsaw University of Technology



XL-th IEEE-SPIE Joint Symposium Wilga 2017 2/23

FPGA in DAQ
● FPGA chips are a perfect solution for interfacing the FEE in the 

DAQ systems
– Flexible communication interfaces (either supported with dedicated 

cores or possible to implement in the programmable logic)

– Possibility to operate in hard real-time. No problems with interrupt 
latencies. It is possible to achieve fully deterministic precise timing.

● There are some disadvantages
– High cost of FPGA based solution

– Difficult implementation of more complex data processing algorithms

– Difficult implementation of more complex communication protocols, 
especially of those related to buffering and repeated retransmission of 
huge amount of data (e.g. TCP/IP)

● Solution?



XL-th IEEE-SPIE Joint Symposium Wilga 2017 3/23

FPGA + „PC” in DAQ
● The solution is to use the standard computer „PC” or „ES” 

as early as possible in the DAQ chain.
● Possible architectures include:

– Using SoCs (e.g. Xilinx Zynq, ZynqMP, Altera SoC FPGAs)

– Using FPGAs „tightly coupled” with the computer system via 
high speed interface – e.g. PCIe

● The problem is the efficient delivery of data from the FPGA 
part to the memory of the computer.

● To spare the CPU computational power for the real 
processing of data, usage of DMA is advisable. 



XL-th IEEE-SPIE Joint Symposium Wilga 2017 4/23

DMA solutions - embarras de 
richesse

● There are various portable solutions available, often for free
– https://opencores.org/project,wb_dma

– https://opencores.org/project,dma_axi

– https://opencores.org/project,virtex7_pcie_dma

● There are different DMA IP-cores provided by the FPGA 
vendors, optimized for their FPGA hardware

● The FPGA implementation offers us an exceptional oportunity to 
prepare a DMA system carefully adjusted to the specific 
requirements of the particular DAQ

● The following examples were developed for Xilinx FPGAs 
(Family 7 or UltraScale+)

https://opencores.org/project,wb_dma
https://opencores.org/project,dma_axi
https://opencores.org/project,virtex7_pcie_dma


XL-th IEEE-SPIE Joint Symposium Wilga 2017 5/23

The first system
● The system was created for the GEM detector DAQ. 

The hardware platform was the KC705 board.
● The FPGA receives the data from FEE, preprocesses it, 

and stores the result in the huge DDR4 memory.
● The data must be read from that memory via the PCIe 

interface.
● This solution is well suited for situations where the 

avarage data bandwidth is moderate, but it is fluctuating.
● In that architecture the natural solution was to use the 

AXI Central DMA Controller and the 
AXI Memory Mapped to PCI Express Gen2 IP cores.

https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
https://www.xilinx.com/products/intellectual-property/axi_central_dma.html
https://www.xilinx.com/products/intellectual-property/axi_pcie.html


XL-th IEEE-SPIE Joint Symposium Wilga 2017 6/23

Implementation of the first system

C
o

m
p

ut
e

r 
sy

st
e

m
C

om
p

ut
er

 s
ys

te
m

DDR controller

Preprocessing
block

DMA
block

AXI bus

Control
registers

PCIe
block

FPGA based
DAQ system

PCIeMeasurement
data

DDR



XL-th IEEE-SPIE Joint Symposium Wilga 2017 7/23

Results

● The implementation can be easily performed in the Vivado Block Diagram Editor
● The Linux driver allowed to allocate the DMA buffer and to mmap it into the 

applications memory.
● The theoretical throughput of AXI and PCIe was 16Gb/s and of AXI. The 

maximum achieved throughput was 10.45 Gb/s for writing to DDR and 8.05 Gb/s 
for reading from DDR.

● For the continuous stream of the data the memory bus may be a bottle neck...



XL-th IEEE-SPIE Joint Symposium Wilga 2017 8/23

The second system
● The hardware platform was the ZCU102 board containing 

both the FPGA and the ARM CPU (SoC)
● The second system was created for the acquisition of 

data from the hardware video encoder (VSI project)
● The data was delivered by the AXI4 Stream interface
● The data should be written to the memory of the PS 

connected via AXI4 interface.
● Each fragment was delivered in a separate AXI4 Stream 

packet, but due to the compression the packets length 
could differ.

● The natural solution seemed to be the AXI DMA controller

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-es2-g.html
https://www.xilinx.com/products/intellectual-property/axi_dma.html


XL-th IEEE-SPIE Joint Symposium Wilga 2017 9/23

Topology of the second system

DDR

Video input
block

DMA
block

DDR controller Control
registers

Processing
system

SoC system

Video encoder

AXI4
Stream

DDR

Video
signal AXI

Bus



XL-th IEEE-SPIE Joint Symposium Wilga 2017 10/23

Problems...
● To receive continuous stream of data, it was necessary to use the 

controller in a circular mode.
● Unfortunately, the AXI DMA Controller with the original Linux kernel 

didn’t report correctly the length of the last transfer.
● Thorough investigation has shown, that it may be difficult to reliably 

fix the problem. (The register holding the length of the transfer gets 
overwritten when the next transfer starts)

● The good alternative was to use the AXI Data Mover
– The transfer commands are delivered by AXI4 Stream

– The status of transfers are delivered back by another AXI4 Stream interface. 
There is no risk to loose the the information about the length of the transfer!

● How to feed the ADM with the commands, and to receive statuses?
– The AXI Streaming FIFO is the good choice...

https://www.xilinx.com/products/intellectual-property/axi_datamover.html
https://www.xilinx.com/products/intellectual-property/axi_fifo.html


XL-th IEEE-SPIE Joint Symposium Wilga 2017 11/23

Implementation with the Xilinx blocks

● The implementation allows to avoid the „buffer overrun” problems.
● There are a few (16) DMA buffers (mmapped to the applications memory), 

and the transfer request for each buffer is generated in advance and written 
to the FIFO.

● After the status of the particular transfer is received, the data is delivered to 
the application for processing.

● Only after the application confirms, that the data is processed, the transfer 
request may be resubmitted to the FIFO



XL-th IEEE-SPIE Joint Symposium Wilga 2017 12/23

Linux driver API
● The DMA buffers are mapped into the application’s memory. The length 

of the single buffer must not be smaller than the maximum length of the 
frame.

● Communication with the driver is performed via ioctl calls:
● ADM_START - Starts the data acquisition.
● ADM_STOP - Stops the data acquisition.
● ADM_GET - Return the number of the next available buffer with the new 

video frame. If no buffer is available yet, puts the application to sleep.
● ADM_CONFIRM - Confirms that the last buffer was processed
● ADM_RESET - This command resets the AXI Data Mover and AXI 

Streaming FIFO. It is necessary before the new data acquisition is 
started to ensure that no stale commands from the previous, possibly 
interrupted transmission are stored in those blocks.

● The ADM_GET and ADM_CONFIRM ioctls ensure the appropriate 
synchronization of the access to the DMA buffers.



XL-th IEEE-SPIE Joint Symposium Wilga 2017 13/23

Results

● The DMA system and the driver was carefully 
tested, and is currently used in the VSI system.

● Due to the specific features of the data source 
no maximum throughput tests were performed.

● It was stated, that even at the maximum frame 
size of 4MB and frame rate of 60 fps, the CPU 
load realted to reception of data was below 1%.



XL-th IEEE-SPIE Joint Symposium Wilga 2017 14/23

The third system

● The third system combined the features of the first two.
● The hardware platform was a purpose-developed Artix-7 

based PCIe card.
● It was the DAQ for the same GEM detector measurement 

system used in case 1, but now configured for the continuous 
operation. Therefore, the DDR buffering of data was useless…

● The data was delivered by the AXI4 Stream interface, but the 
packets could be bigger than any reasonable single DMA 
buffer.

● Therefore it was necessary to use another architecture



XL-th IEEE-SPIE Joint Symposium Wilga 2017 15/23

Topology of the third system

Computer
 system

Computer
 system

Preprocessing
block

DMA
block

Control
registers

PCIe
block

FPGA based DAQ system

PCIe

M
ea

su
re

m
en

t
da

ta

AXI4
Stream

● The IP-core used as a DMA engine and PCIe block was the Xilinx 
DMA for PCIe also known as XDMA.

● The block supports 64-bit addressing at the PCIe side, so it could be 
used with huge (above 4GB) sets of DMA buffers.

● The block is so complex, that it was practically necessary to use the 
driver provided by Xilinx. Unfortunately, it required certain modifications...

https://www.xilinx.com/products/intellectual-property/pcie-dma.html


XL-th IEEE-SPIE Joint Symposium Wilga 2017 16/23

Driver corrections
● The original driver supported the cyclical transfer only with read/write 

operations – no zero-copy transfer was possible
● For cyclical transfer the driver didn’t implement any overrun protection

– The driver checks the „MAGIC number” of the transfer request

– After the transfer is finished, its status is written back to the memory as 
„metadata writeback” with another „MAGIC number”.

– It is possible to configure the same transfer request and writeback addresses. 
So the status overwrites the request, and blocks a possibility to perform the 
same transfer again.

– After the application processes the data, the transfer request should be 
rewritten, with the „MAGIC number” written as the last word. That ensures 
that the overrun condition will generate a transfer error.

● Another problem was related to handling of huge data in a circular 
buffer



XL-th IEEE-SPIE Joint Symposium Wilga 2017 17/23

Buffer mapping

● Received data are organized in structures for direct 
access from the C-language

● The scattered DMA buffers were mapped so that they 
create a huge continuous buffer in a virtual address space

● To allow efficient direct processing – caching was switched 
on for the buffer (so synchronization between CPU and 
DMA was necessary via ioctls)

● The processing library may simply use the pointer to the 
data
– But what about cyclic buffer?



XL-th IEEE-SPIE Joint Symposium Wilga 2017 18/23

Buffer mapping

● Received data are organized in structures for direct access 
from the C-language

● The scattered DMA buffers were mapped so that they create a 
huge continuous buffer in a virtual address space

● To allow efficient direct processing – caching was switched on 
for the buffer (so synchronization between CPU and DMA was 
necessary via ioctls)

● The processing library may simply use the pointer to the data
– But what about cyclic buffer?

– The first solution is usage of the buffer with length of 2^N bytes, and 
using the modular arithmetic to access the contents



XL-th IEEE-SPIE Joint Symposium Wilga 2017 19/23

Buffer mapping

● Received data are organized in structures for direct access 
from the C-language

● The scattered DMA buffers were mapped so that they create 
a huge continuous buffer in a virtual address space

● To allow efficient direct processing – caching was switched on 
for the buffer (so synchronization between CPU and DMA was 
necessary via ioctls)

● The processing library may simply use the pointer to the data
– But what about cyclic buffer?

– The solution is the „overlap mapping”



XL-th IEEE-SPIE Joint Symposium Wilga 2017 20/23

Overlap mapping
P

h
ys

ic
a

l a
d

d
re

ss
e

s

Buffer 1

Buffer 0

Buffer 3

Buffer 5

Buffer 6

Buffer 7

Buffer 4

Buffer 2

V
irt

ua
l a

d
d

re
ss

e
s 

in
 th

e
 a

p
p

lic
at

io
n

Buffer 0
Buffer 1
Buffer 2
Buffer 3
Buffer 4
Buffer 5
Buffer 6
Buffer 7
Buffer 0
Buffer 1
Buffer 2

The maximum
length of the
packet

The overlap
mapping

● Scattered DMA buffers are 
mapped as a continuous 
buffer in the virtual address 
space.

● Double mapping of the 
beginning of the buffer 
ensures, that each object 
stored in the cyclic buffer 
may be reliably accessed via 
a standard pointer as a 
continuous entity.



XL-th IEEE-SPIE Joint Symposium Wilga 2017 21/23

Results

● The third system was tested with the simulated 
data.

● The achieved throughput was 14.2 Gb/s (89% 
of the theoretical throughput 16 Gb/s for 4 lanes 
PCIe Gen 2.

● Long term (28 h) tests has proven the error-free 
transmission.



XL-th IEEE-SPIE Joint Symposium Wilga 2017 22/23

Conclusions
● Three DMA systems adjusted to different architectures of the data acquisition 

systems and different requirements are presented.
● The simplest version performs DMA transfers on request from the data-processing 

application. 
– no problems related to cyclic mode, possible overruns, and synchronization between the 

DMA and the processing threads.

● The third version is the high-performance system able to almost fully utilize the 
bandwidth of the PCIe bus for delivery of the continuous stream of data for a long 
time.

● The possibilities to work around deficiencies of the IP-core design have been 
presented.

● All presented DMA systems have been successfully synthesized, implemented 
and tested. They may be reused in different DAQ systems - both based on SoC 
chips using only the AXI bus, and in PCIe-based systems with the PCIe endpoint 
blocks.

● The presented solutions are based on Xilinx provided IP cores. However, similar 
blocks are available also for FPGA or SoC chips from other vendors. The 
described techniques used in the Linux kernel drivers should also be portable to 
other hardware platforms.



XL-th IEEE-SPIE Joint Symposium Wilga 2017 23/23

Thank you for your attention!


	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23

