# Study of some aspects of straw tube detectors

S. Roy, R. P.Adak, <u>S. Biswas</u>, S. Chattopadhyay, S. Das, D. Ghosal, S. K. Ghosh, A. Mondal, D. Nag, D. Paul, S. K. Prasad, S. Raha, J. Saini

Bose Institute, Kolkata





INSTR17: Instrumentation for Colliding Beam Physics, 27 February - 3 March, 2017, BINP, Novosibirsk, Russia



#### Outline

- CBM experiment @ FAIR
- CBM Muon Chamber
- GEM development
- R&D of Straw tube
- Summary and Outlook

#### Phase diagram of matter



- Main aim of relativistic heavy ion collisions is to study the phase diagram of strongly interacting matter.
- CBM @ FAIR, Darmstadt, Germany will explore the region at low temperature and moderate to high baryon densities.

### The Compressed Baryonic Matter Experiment (CBM)@FAIR

- Fixed target heavy-ion experiment
- Energy range 2-45 GeV/u
- Expected to begin 2021

#### CBM physics program:

- Equation of state at moderate baryon density
- Deconfinement phase transition
- QCD critical endpoint
- Chiral symmetry restoration

Diagnostic probes of the high-density phase:

- Open charm, charmonia
- Low-mass vector mesons
  - Rare probes
  - High interaction rates
  - Selective triggers
- Multi strange hyperons
- Flow, fluctuations, correlations



#### CBM experiment : Muon set up





#### Muon detection system



All the GEM R&D has been carried out at VECC for CBM

At Bose Institute, Kolkata an initiative has been taken for R&D of GEM detector (stability test) and Straw tube detector for the CBM Muon Chamber (MuCh)

#### Set-up at Bose Institute



### Long term stability test

- Long term stability test is done with Fe<sup>55</sup> source (100 mCi or 3.7 GBq)
- Gas: Ar/CO<sub>2</sub> 70/30
- Constant applied voltage to the divider: -4300 V
- Anode current is measured with and without source continuously (using Keithley 6485 Pico-ammeter)
- Temperature, pressure and relative humidity are measured continuously



r is the rate of the X-ray, n is the number of primary electrons and e is the electronic charge.



#### Correlation plot



- $g = G/Ae^{BT/p}$
- $G(T/p) = Ae^{BT/p}$
- G = measured gain
- g = normalized gain
- A & B fit parameter
- Townsend coefficient  $\alpha \propto I/\rho \propto T/p$
- *ρ* = mass density

Ref. M.C. Altunbas et al., NIM A 515 (2003) 249-254.





Normalized gain Vs.  $\frac{dQ}{dA}$ 



2016 JINST 11 T10001 doi:10.1088/1748-0221/11/10/T10001. [arXiv:1608.00562]

#### Straw tube detector

- Straw tube is typically prepared from a kapton film, one side containing a conductive layer of 1000-3000 Å Al + 4  $\mu$  m carbon-loaded kapton and the other side containing a thermoplastic polyurethane layer of 3  $\mu$  m.
- The thickness of the straw wall is around 60  $\,\mu$  m.
- A straw tube detector is basically a gas filled single channel drift tube with a conductive inner layer as cathode and a wire stretched along the cylindrical axis as anode
- When high voltage is applied between the wire and the tube an electric field is generated in the gas filled region.
- The electric field separates electrons and positive ions produced by an incident charged particle along its trajectory through the gas volume.
- The wire is kept at positive voltage and collects the electrons while the ions drift towards the cathode. By choosing thin wires, with a diameter of a few tens of  $\mu$  m, the electric field strength near the wire is made high enough to create an avalanche of electrons.
- Depending on the high voltage and the gas composition a gain of about  $10^4 10^5$  can be achieved

#### Straw tube for CBM



Detector courtesy: Late Prof.Vladimir Peshekhonov of JINR, Dubna

15

### Signal from Straw tube





#### **Block diagram**



#### For count rate measurement

- Gas:  $Ar/CO_2$  gas in 70/30
- Flow rate: 3 lt/hr
- Conventional NIM electronics



## Count rate vs. voltage for Fe<sup>55</sup>



R. P.Adak, et. al. Proc. of the DAE-BRNS Symp. on Nucl. Phys. Vol. 61, (2016), 996-997.

## Count rate vs. voltage for different sources





#### Test of signal attenuation





#### Gain vs. voltage



# Uniformity of count rate along the length of the straw



# Uniformity of gain along the length of the straw





#### Gain vs. rate



## Summary and outlook

- Basic characteristic studies are performed for straw tube with Ar/CO<sub>2</sub> gas in 70/30 ratio using conventional NIM electronics.
- Count rate, gain, signal attenuation, uniformity are studied
- Dependence of rate on gain is observed
- Use of the straw tube in CBM MuCh is under investigation.



### Acknowledgements

We would like to thank Late Prof.Vladimir Peshekhonov of JINR, Dubna for providing the straw tube prototype

#### and

Dr. Christian J. Schmidt of GSI Detector Laboratory for valuable discussions in the course of the study.





#### Thank you for your kind attention !



#### Back-up slides



#### **MUCH: Accumulated Charge**

| Η                       | hits/cm²/event                                        | ~0.5 (first GEM Layer)                  |
|-------------------------|-------------------------------------------------------|-----------------------------------------|
| R                       | event rate [Hz]                                       | I 0 <sup>7</sup>                        |
| Ρ                       | primary electrons/track                               | ~30                                     |
| G                       | detector gas gain                                     | I 0 <sup>3</sup>                        |
| N <sub>e</sub>          | =H×R×P×G (no. of electrons)                           | 1.5×10 <sup>11</sup> cm <sup>2</sup> /s |
| Q <sub>y</sub>          | =N <sub>e</sub> ×Q <sub>e</sub> ×y (acc. charge/year) | 0.75 C/cm²/y                            |
| <b>Q</b> <sub>10y</sub> | acc. charge over exp. lifetime                        | <b>7.5 C/cm<sup>2</sup></b>             |
|                         |                                                       |                                         |



#### Hysteresis

