Investigation of ceramic based Resistive Plate Chambers for high rate applications

MT Meeting Darmstadt 2017 Lothar Naumann

HZDR

HELMHOLTZ | ZENTRUM DRESDEN | ROSSENDORF

Dr. Lothar Naumann | Institute of Radiation Physics | www.hzdr.de

Outline

- Prototype development of Resistive Plate Chambers (RPC) with low resistive ceramic electrodes for high rate capability
- A Beam Fragmentation T₀ Counter (BFT₀C) in the framework of the Compressed Baryonic Matter (CBM) Experiment

RPC mode of operation

- time resolution $G \le 100 \text{ ps} \rightarrow \text{gap} \le 300 \text{ }\mu\text{m}$; el. field $\ge 100 \text{ kV/cm}$
- rate capability $\geq 100 \text{ kHz/cm}^2 \rightarrow \text{bulk resistivity} \leq 10^{10} \Omega \text{ cm}$

Ceramic electrodes

Fraunhofer IKTS Dresden – rough ceramics as sintered:

- Ø ≈ 30 cm
- d ≈ 3.5 mm

mixing ratio:

- Si₃N₄/SiC
 (80%/20%)
- cutting
- grinding
- polishing
- rounding

HZDR: cleaning drying ρ, ε - measurement detector assembling

Mitglied der Helmholtz-Gemeinschaft

Resistive Plate Chambers @ HZDR

RPC area	gas gap design			anode design		
[cm²]	number	size [µm]	separator	number	length [cm]	width [cm]
2x2	3x2	250	ceramics	1	2	2
5x5	2	300	kapton	1	5	5
5x5	3x2	250	ceramics	1	5	5
10x10	2x2	250	fishing line	8	10	1
10x10	2x2	300	mylar	8	10	1
20x20	2x2	250	fishing line	16	20	1.125
20x20	2x2	300	mylar	16	20	1.125
20x20	6	250	fishing line	32	20	0.375

Mitglied der Helmholtz-Gemeinschaft

Detector test facility @ ELBE

Detector test facility @ ELBE

RPC rate capability results

Mitglied der Helmholtz-Gemeinschaft

Laser facility for gaseous detectors

- Application of UV laser beams for calibration and surveying of gas filled detectors since 1979
 [MDC: M. Anderhub et al. NIM 166 (1979); RPC: E. Gorini et al. NIMA 425 (1999)]
- Micro-plasma creation inside a sub-millimeter narrow gas gap is up to now a technical challenge
 [RPC: Fonte et al. NIMA 613 (2010); L. Naumann et al., JINST V.9 (2014)]
 - Townsend coefficient in a RPC gap

Mitalied der Helmholtz-Gemeinschaft

Laser facility for gaseous detectors

Laser parameters

- wavelength: 257 nm \rightarrow 4.8 eV
- pulse repetition rate: ≤ 100 kHz
- pulse length: 2.5 ps
- beam envelope: r_{min} ≤ 10 μm, I_{Debye} = 300 μm
- beam flux density: $\leq 10^{11}$ W/cm²

Laser facility for gaseous detectors

Mitglied der Helmholtz-Gemeinschaft

Laser facility results

- strong dependence on the laser rep. rate
- recovery time for float glass RPC is in the order of several seconds
- the Townsend coefficient follows a horizontal asymptote with $\alpha \approx 50 \text{ mm}^{-1}$

Laser facility result

Mitglied der Helmholtz-Gemeinschaft

- Important scopes of High Energy Heavy Ion experiments are start-time and reaction-plane determination.
- For the Compressed Baryonic Matter Experiment (CBM) at FAIR the use of RPC with low resistive radiation hard ceramics electrodes and small chess-board like single cells is under consideration for the Beam Fragmentation T₀ Counter.

Challenges of the BFT₀C region:

- High-rate capability up to ≥ 2x10⁵cm⁻²·s⁻¹
 - \rightarrow one floating electrode per cell
- Timing resolution: **6** ≤ **60** ps
- Efficiency: ≥ **98** %
- Double-hit suppression: $\leq 2 \% \rightarrow$ cell size 20x20 mm²
- Cross-talk suppression: ≤1-2%

→ RPC with low resistive ceramics electrodes and chessboard like single cell design are under consideration

Mitglied der Helmholtz-Gemeinschaft

Mitglied der Helmholtz-Gemeinschaft

Demonstrator design

In order to find optimal resistivity value for BFT_0C conditions and requirements Si_3N_4/SiC floating electrodes with a bulk resistivity from 10^7 to $10^{12} \Omega \cdot cm$ were tested.

Overlapping mid of groove

Mitglied der Helmholtz-Gemeinschaft

Dr. Lothar Naumann | L.Naumann@hzdr.de | Institut of Radiation Physics | www.hzdr.de

BFT₀C – efficiency (electrons)

• $2 \times 10^{10} \Omega \text{cm}$: ϵ fast degrease with flux

• $5x10^8 \Omega$ cm: ϵ is not capable to get on the efficiency plateau: unstable work and lots of streamers starting from 87-88 kV/cm

3x10⁹ Ωcm: most suitable resistivity order for our aims

Mitglied der Helmholtz-Gemeinschaft

BFT₀C - time resolution

Mitglied der Helmholtz-Gemeinschaft

Summary

- A Beam Fragmentation T₀ Counter of 120x120 cm² in the innermost region of the CBM TOF wall with 2x2 cm² chess-board like single RPC cells is under consideration.
- Radiation hard low resistive Si_3N_4/SiC composite is a candidate for the floating electrodes of the RPC cells and manufacturing process has been developed to produce ceramic electrodes with $3 5 \cdot 10^9 \Omega$ cm.
- The dark count rate has been reduced to 0.5 Hz/cm² by special material treatments .
- RPC tests with relativistic electron beam fluxes of up to 2x10⁵ cm⁻²s⁻¹ have been provided.
- The detection efficiency amounts to 98 % and is sufficient for CBM, while the time resolution amounts to 90 ps and needs still further improvement.

Outlook

- Estimation of streamer excitation
- Implementation of PADI-FEE
- Radiation hardness test of powered RPC cells with fast neutrons
- Cost reduction by modern technology employment for Si₃N₄/SiC ceramics composite production
- Assembling of a 32-modular demonstrator with $3 5 \times 10^9 \Omega$ cm electrodes

Acknowledgment:

Helmholtz-Zentrum Dresden-Rossendorf HZDR - Dresden/Germany Institute of Radiation Physics: J. Dreyer, X. Fan, B. Kämpfer, R. Kotte, A. Laso Garcia, U. Schramm, M. Siebold, D. Stach

Institute for Theoretical and Experimental Physics ITEP - Moscow/Russia: A. Akindinov, D. Malkevich, A. Nedosekin, V. Plotnikov, R. Sultanov, K. Voloshin

HZDR

HELMHOLTZ | ZENTRUM DRESDEN | ROSSENDORF

Dr. Lothar Naumann | Institute of Radiation Physics | www.hzdr.de