Hit Reconstruction in the CBM Silicon Tracking System

Hanna Malygina^{1,2,4}, Volker Friese², Maksym Zyzak^{2,3} for the CBM Collaboration ¹Goethe University, Frankfurt; ²GSI, Darmstadt; ³FIAS, Frankfurt; ⁴KINR, Kyiv

The Compressed Baryonic Matter experiment and its Silicon Tracking System

CBM experiment:

QCD-diagram at moderate temperature and high density;
Au + Au @ 2-11 AGeV, 10⁵-10⁷ interactions/s;
up to 1000 charged particles per central collision.

STS requirements:

- momentum resolution $\leq 1.5\%$;
- high reconstruction efficiency;
- fast: hit rates up to 20 MHz/cm²;
- radiation hard: 10^{14} 1 MeV n_{eq}/cm²;
- low material budget $\sim\!1\,\%\,X_0/station.$

STS design:

- 8 tracking stations in 1 T field;
- double-sided micro-strip Si sensors:
- \sim 300 μ m thick, 58 μ m strip pitch;
- 7.5° stereo-angle between front and back side strips;
- fast free-streaming r/o electronics.

Detector response model

Hit position error verification

- non-uniform energy loss of incident particle modelled with Urban method on discretised trajectory;
- drift of created e-h pairs in **planar** E-field and **Lorentz-shift** in B-field;
- spread out of the charge carriers cloud due to **thermal** diffusion;
- cross-talk charge redistribution over the read-out channels due to **inter**-**strip** capacitance;
- read-out electronics modelling: Gaussian noise, threshold = 3σ of noise, dead time and time resolution, charge discretisation.

Cluster position \mathbf{x}_{rec} finding algorithms

- hit **pull distribution**: $pull = \frac{residual}{error}$:
- its shape must reproduce the shape of residuals;

Residuals (left) and pulls (right) for 2-strip clusters at fixed q_1 and q_2 simulated with ideal detector.

– its width must be pprox 1.

Simulation of cluster position residuals with ideal cluster finder taking into account different physical processes one-by-one for all cluster sizes. 1000 mbias Au+Au @ 10 AGeV

Unbiased vs Center-Of-Gravity:

- residuals obtained from both algorithms are comparable;
- unbiased algorithm is faster and simplifies position error estimation.

Position error estimation

•
$$\sigma^2 = \sigma_{\text{algorithm}}^2 + \sum_{\text{strips}} \left(\frac{\partial x_{\text{rec}}}{\partial q_i}\right)^2 \sum_{\text{components}} \sigma_j^2$$

• Considered contributions:

Pull width change with different physical processes takeninto account. 1000 mbias $Au+Au \ @ 10 \ AGeV$ • χ^2 distribution for tracks: mean value must be ≈ 1 ;

- unbiased algorithm:

$$\sigma_{1-\text{strip}} = \frac{p}{\sqrt{24}}, \ \sigma_{2-\text{strip}} = \frac{p}{\sqrt{72}} \left(\frac{|q_2 - q_1|}{\max(q_1, q_2)} \right), \ \sigma_{n-\text{strip}} = 0;$$

- noise: $\sigma_{noise} = equivalent$ noise charge;

- charge discretisation: $\sigma_{\rm discr} = {{\rm dynamic\ range}\over \sqrt{12}} {{\rm number\ of\ ADC}};$

- diffusion: negligible;
- non-uniform energy loss: needs assumptions:
- registered charge corresponds to the MPV of the energy loss;
 incident particle is ultrarelativistic.

 $\mathsf{MPV} = \xi[\mathsf{eV}] \times (\ln(1.057 \times 10^6 \xi[\mathsf{eV}]) + 0.2) \Rightarrow \sigma_{\mathsf{non}} = 4.018\xi/2.$

S. Meroli, D. Passeri, and L. Servoli, 2011.

• Contributions TBA: Lorentz shift, threshold, cross-talk.

 χ^2 -distribution with the described method of error estimation. 20 000 mbias Au+Au @ 10 AGeV

Summary

- Implemented unbiased cluster **position finding algorithm**:
- has residuals \leq the Center-Of-Gravity residuals;
- considerably simplifies position error estimation.
- Developed **position error estimation** method is verified by:
- width and shape of the hit pull distribution;
- track χ^2 distribution.

Contact

Hanna Malygina: h.malygina@gsi.de