Construction of Multi Wire Proportional Chambers for the CBM Transition Radiation Detector

Bundesministerium für Bildung und Forschung

Florian Roether FAIRNESS 2.6.2017

Outline

- Motivation
- •The CBM experiment
- Physics objectives of the TRD
- Principle of operation
- Front end electronics
- Chamber construction

The phase diagram of nuclear matter

- D mesons
- J/ψ mesons
- promt y

- vector mesons (ω,ρ,φ)
 - \rightarrow decay to mesons or dilepton pairs
- multi-strange hyperons (Ξ,Ω)
 - \rightarrow small hadronic cross section
- thermal y

- final stage "freeze out"
 - → K, π, Λ, η
 - \rightarrow resonances
- decay y

Physics cases and observables at CBM

- The equation-of-state of matter at neutron star densities.
- In-medium properties of hadrons.
- Phase transitions from hadronic matter to quarkyonic or partonic matter at high net-baryon densities.
- Hypernuclei, strange dibaryons and massive strange objects.
- Charm production mechanisms, charm propagation and inmedium properties of charmed particles in (dense) nuclear matter.

The Compressed Baryonic Matter experiment

Design parameter (SIS100)											
Max. signal collection time	0.3 μs										
Typical space point resolution	~ 300 µm										
Pion suppression at 90 % electron efficiency and $p \ge 1.5$ GeV/c	10 - 20										
dE/dx resolution above p = 1 GeV	~ 25 %										
Detector radiation length (active area)	< 5% X ₀ per layer										
Pseudo-rapidity coverage	0.89 < η < 3.74										
Azimuthal coverage	2π										

Physics objectives of the TRD

Intermediate mass dileptons

Provide access to thermal radiation from the hot and dense fireball.

• Fragments:

Essential for the study of hyper- and anti-nuclei.

• Quarkonia:

Quarkonia states, are probes for the presence of deconfined matter.

Low mass vector mesons:

Provides information on medium induced modification of the hadron spectral functions.

• Photons:

Can provide information on the temperatures of the early stages in a heavy-ion collision.

Particle identification

Likelihood method

Likelihood method

2016-09-13 20:54:27

Dielectron reconstruction

- Au+Au at 8AGeV (10% most central)
- 4 Layer TRD

J/ψ reconstruction

Fragment reconstruction

17

Pad plane:

- PCB material (FR4)
- 35µm copper plated
- segmented into pads
- potential: OV (ground)

Anode wire plane:

- Gold plated tungsten wires
- 20µm diameter
- potential: 1850 V

Cathode wire plane:

- Copper-Beryllium wires
- 79 µm diameter
- potential: 0 V (ground)

•	•	•	•	•	•		•	•	•	•		•	•		•	•		•	•	•	•	•	•	•	•	•	•	
•	•	•	•		•	•	•	•		•	•		•	•		•	•	•		•	•	•	,	•	•	, ,	•	•

Entrance window:

- 20µm Kapton foil
- aluminized
- potential: -150 V

Pad response function

Induced signal on pad plane

Transition Radiation

Test of different radiators

Induced signal on pad plane

dE/dx spectra for pions and electrons

Front end electronics

SPADIC (Self-triggered Pulse Amplification and Digitization asIC)

- 32 channels
- 9-bit ADC
- Self-triggered (two trigger modes)
- Digital shaper

Chamber design

Station layout

- Three large chamber types (95x95cm²)
- Three small chamber types (57x57cm²)
- 50 chambers per detector layer

Chamber construction

First large prototypes

Entrance window

Back panel

Wire ledges with anode- and cathode-wire planes

First large prototypes

Beam table

Final chamber

Test beam campaign at SPS

Outlook

Upcoming test beams:

GIF++

High-rate performance of MWPCs 137Cs Source (13.7 TBq)

μ-Beam

DESY

Systematic characterization of module performance

Mini-CBM: DAQ test system

Thank you

BACKUP

Testbeam 2015 at SPS

- moderate hit rates of up to 2 kHz/cm²
- clear correlation between both detectors
- to extract precise information on position resolution an external reference detector is needed

Electron drift time distribution

Fragment separation

