

Perspectives of measuring deeply bound states at FAIR

N. Herrmann, Univ. Heidelberg

Facility for Antiproton & Ion Research

The CBM mission: QCD phase diagram

Heavy – Ion Collisions

Background anti-Kaonic Nuclear Clusters (KNC)

Past Experimental observations

Present FOPI Analysis status

Future CBM

71st Fujihara Seminar, Shimoda, 7.7.2016

Phenomenological KN - potential

Y. Akaishi, T.Yamazaki (2002): **KN interaction is strongly attractive !** Λ (1405) is (K⁻p) bound state.

AY- potential designed to:

- describe scattering length of free KN scattering
- X-ray shifts of kaonic hydrogen atom
- mean and width of $\Lambda(1405)$

Deep optical potential:

Y. Akaishi, T.Yamazaki, T.Yamazaki and Y. Akaishi, N.Kaiser et.al, Phys.Rev.C65, 044005 (2002) Phys.Lett.B535, 70 (2002) Nucl. Phys. A594 (1995) 325;

Shallow optical potential:

(microscopic chiral treatment)

M.F.M. Lutz, Phys. Lett. B426 (1998) 12. J.Schaffner-Bielich et.al, N.P. A669 (2000) 153, Ramos et.al,N.P. A671 (2000) 481, Cieply et al.,N.P. A696 (2001) 173

Cold Dense Baryonic Matter

Possible mechanism for cluster formation:

T.Yamazaki et al., NPA738,168 (2004)

1) Kaon production during high density phase

2) capture of K⁻ in deep trapping centers

3) Shrinkage \rightarrow Large densities!

A. Dote et al., PLB 590, 51 (2004)

FOPI apparatus at SIS18

Data taking period: 1991 - 2011

Detection / Reconstruction Method

Data processing (S261, Ni+Ni at 1.93 AGeV, 2003)

Strange cluster search in HI - collisions

Experiment proposal 2004

Proposed signature of KNC

- $ppK^{-}(T=1/2) \rightarrow \Lambda + p,$ i
- $ppnK^{-}(T=0) \rightarrow \Lambda + d,$ ii)
- *iii*) $pppK^{-}(T = 1) \rightarrow \Lambda + p + p$.

Request: AI + AI, 2 AGeV, 21 days, p + d, 4.6 GeV, 7 days, p + C, 4.6 GeV, 14 days

Measurements of Strange Baryons and Kaonic Nuclear Clusters with FOPI

A. Andronic⁴, V. Barret³, Z. Basrak¹², N. Bastid³, L. Benabderrahmane⁶, R. Čaplar¹², E. Cordier⁶, P. Crochet³, P. Dupieux³, M. Dželalija¹², Z. Fodor², O.N. Hartmann⁴, N. Herrmann⁶, K.D. Hildenbrand⁴, B. Hong⁹, J. Kecskemeti², Y.J. Kim⁹, M. Kireiczyk¹¹, P. Koczon⁴, M. Korolija¹², R. Kotte⁵, A. Lebedev⁷, Y. Leifels⁴, X. Lopez³, A. Mangiarotti⁶, V. Manko⁸, T. Matulewicz¹¹, M. Merschmever⁶, D. Pelte⁶, M. Petrovici¹, F. Rami¹⁰, W. Reisdorf⁴, A. Schüttauf⁴, Z. Seres², B. Sikora¹¹, K.S. Sim⁹, V. Simion¹, K. Siwek-Wilczyńska¹¹, V. Smolyankin⁷, G. Stoicea¹, Z. Tyminski^{4,11}, K. Wiśniewski¹¹, Z.-G. Xiao⁴, I. Yushmanov⁸, A. Zhilin⁷ (FOPI Collaboration)

and T. Yamazaki¹³, K. Suzuki¹⁴, L. Fabbietti¹⁴, J. Zmeskal¹⁵, J. Marton¹⁵, M. Cargnelli¹⁵ and P. Kienle^{14,15}

¹ National Institute for Physics and Nuclear Engineering, Bucharest, Romania ² KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary ³ Laboratoire de Physique Corpusculaire, IN2P3/CNRS, and Université Blaise Pascal. Clermont-Ferrand, France ⁴ Gesellschaft f
ür Schwerionenforschung, Darmstadt, Germany ⁵ IKH, Forschungszentrum Rossendorf, Dresden, Germany ⁶ Physikalisches Institut der Universität Heidelberg, Heidelberg, Germany ⁷ Institute for Theoretical and Experimental Physics, Moscow, Russia. ⁸ Kurchatov Institute, Moscow, Russia ⁹ Korea University, Seoul, South Korea ¹⁰ Institut de Recherches Subatomiques, IN2P3-CNRS, Université Louis Pasteur, Strasbourg, France ¹¹ Institute of Experimental Physics, Warsaw University, Poland ¹² Rudjer Boskovic Institute, Zagreb, Croatia

¹³ Heavy-Ion Nuclear Physics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan, ¹⁴ Physik Department, Technische Universität München, D-85748 Garching, Germany, ¹⁵ Institut f
ür Mittelenergie-Physik, Östereichische Akademie der Wissenschaften, Boltzmanngasse 3, A-1090, Wien, Austria

Summary

We propose experiments to measure the production of strange baryon resonances (Σ^* , etc.) and \overline{K} clusters (ppK^- , $ppnK^-$, $pppK^-$, etc.) in Al + Al reactions at 2 AGeV and in p+d and p+Creactions at 4.6 GeV with the FOPI apparatus.

Results from AI + AI run (S297)

Exp. Conditions: Al+Al at 1.92 AGeV, 18 d running (Aug 2005) 5 · 10⁸ recorded events 10 TByte raw data

Search for hadronic molecules: Λp – correlation

Subtract mixed event background from event wise correlations

Method:

Λp – Interpretation?

COSY TOF @ 2.95 GeV/c Cusp in pp – reactions: $p + p \rightarrow K^+ + \Lambda + p$ S. Jowzaee et al., Eur. Phys. J. A52 (2016) 7 1.6 χ² / ndf R.Siebert et al., NPA 567,819 (1984) - SPES4/SATURNE II 226.8/163 g _{EN} 1.253 ± 0.180 12.6° 20.0° m, [GeV] $\textbf{2.31} \pm \textbf{0.02}$ 1.4 200 C^{*}Γ₀ [GeV²] 0.3106 ± 0.0241 150 "Deviation spectrum" c, [GeV⁻¹] 0.0007869 ± 0.0000334 c, [GeV²] 3.713 ± 0.001 150 d²o/docdMM (nb/sr MeV) 1.2 100 0.08079 ± 0.08156 a, 0.03065 ± 0.00424 100 0.0115 ± 0.0162 a_2 50 units] 50 yield [arb. ?00 150 23.5° 16.1 100 100 [₩]₩₽[±]₽₩₩₩₽[±]₽[±]₩[±]₩[±]₩ 50 50 0.4 CUSP Resonance 2140 2180 2180 2060 2100 0.2 2060 2100 2140 MM (MeV) Reflections **FSI** Fig. 6. Inclusive missing mass spectra for pp \rightarrow K⁺X at 2.7 GeV incident energy. The kaon laboratory scattering angles are 12.6°, 16.1°, 20.0° and 23.5°. The bins are 1.5 MeV wide. The 2.05 2.1 2.15 2.2 2.25

laboratory scattering angles are 12.6°, 16.1°, 20.0° and 23.5°. The bins are 1.5 MeV wide. The resolutions (FWHM) are approximately 3 MeV (12.6°), 4 MeV (16.1°), 3.5 MeV (20.0°) and 5 MeV (23.5°). The dashed lines show the 3-body phase-space to which a fitted gaussian distribution centered at 2136 MeV was added at 20.0°. This peak is also shown separately.

Peak position in FOPI data consistent with p+p scattering data: M = 2.136 ± 0.004GeVEarlier observations and interpretations:A.T.M. Aerts and C.B. Dover, Phys. Lett. B146, 95 (1984): D_t (q4 x q2 structure)O. Braun et al., NPB 124,45 (1977), reaction K⁻ + d $\rightarrow \Lambda p\pi^-$: ΣN – bound state H(2129)

71st Fujihara Seminar, Shimoda, 7.7.2016

invariant mass pA [GeV/c²]

Doorway state X2265: evidence for (ppK⁻)_{bound}

T. Yamazaki, et al., PRL 104,132502, 2010.

 $p + p \rightarrow K^+ + X \rightarrow K^+ + \Lambda + p$ at 2.85GeV, q=1.6 GeV

Production probability: $X / \Lambda = 0.1$

Peak parameter:

 $M = 2.265 \pm 0.002 \text{ GeV}$ $\Gamma = 118 \pm 8 \text{ MeV}$

J-PARC E27: Y. Ichikawa et al., Prog. Theor. Exp. Phys. 2013, 0

 π^+ + d \rightarrow K⁺ + X at 1.69 GeV, q=0.3 GeV

Event selection: high momentum proton at backward angles M= 2.27 GeV, B= 95 + 18 - 17 (stat.) + 30 - 21 (syst.) MeV, $\Gamma=162 + 87 - 45 \text{ (stat.)} + 66 - 78 \text{ (syst.)} \text{ MeV}.$

Ad correlation: comparison AI+AI \leftrightarrow Ni+Ni

Λd – correlations

FOPI 2003 and 2008 data are consistent, inconsistent with cusp ($\Sigma - d$ – threshold), compatible with latest theoretical developments? (FOPI, work in progress)

FOPI experimental scenario:

Data taking:	2 weeks,
DAQ rate:	1kHz,
Event sample:	~ 100 M events,
Statistical significance:	~ 5,
Production probability:	P ~ 10 ⁻⁴

Significance does not include systematic uncertainties

non – thermal phase space population non – monotonous centrality dependence non – trivial mixed event bkgd determination LEE – Look elsewhere effect (?)

Comparison to Theory

S. Maeda, Y. Akaishi, T. Yamazaki, Proc. Jpn. Acad., Ser. B89, 418 (2013)

K⁻p K⁻K⁻pp K⁻pp K⁻ppn - 8 MeV = -1.20 KN interaction strength type - 24 MeV 27 MeV 1.93 fm "Chiral" $s_{\rm KN} = -1.37$ 42 MeV 43 MeV 1.89 fm 1.57 fm - 52 MeV 1.62 fm - 69 MeV 1.75 fm -93 MeV s_{KN} = −1.60 🖚 = "A(1405) PDG" 1.35 fm -117 MeV 1.61 fm Larger gain! -190 MeV "DISTO" 1.09 fm

FOPI - Λ d - peak parameter:

N _{K-ppn}	= 261 ± 100 (stat.)	8
N _Λ	= 27 k	2
S/B	= 0.118	C
N _{K-ppn} /N	l _∧ > 0.01	>
M	= 3.167 ± 0.012 GeV	3
В	= 143 ± 12 MeV	1
Γ	= 85 ± 47 MeV	1

```
819 ± 183 (stat)
27 k
0.049
> 0.03
3.131 ± 0.015 GeV
178 ± 15 MeV
149 ± 40 MeV
```

CBM 10⁻¹

Experimental strategy towards KNC states

N.Herrmann, Univ. Heidelberg20

Experiments exploring dense QCD matter

SIS 100- Hyperons

cimentral (b=0fm) Au+Au collisions at 8 AGeV, 1M events

- Massively parallel data reconstruction and selection in real-time
- 100 kHz archival rate:
 - → 500k Ω^{-} /week
 - \rightarrow flow, correlations, ...
 - \rightarrow hypernuclei,
 - \rightarrow deeply bound kaonic clusters?

Expectations for 4AGeV:

<M(Λ)> ~ 10, Counts N_{K-ppn}/N_{Λ} (SHM) ~ 5 \cdot 10⁻³ N_{K-K-pp}/N_{Λ} (SHM) ~ 2 \cdot 10⁻⁷

Counts in 1 week run: $N(\Lambda)$ ~ 4 \cdot 1010 $N(K^-ppn)$ ~ 2 \cdot 108 $N(K^-K^-pp)$ ~ 8 \cdot 103@ 10MHz:~ 8 \cdot 105

CBM Technical Design Reports

#	Project	TDR Status				
1	Magnet	approved				
2	STS	approved				
3	RICH	approved				
4	TOF	approved				
5	MuCh	approved				
6	HADES ECAL	approved				
7	PSD	approved				
8	MVD	submission 2016				
9	DAQ/FLES	submission 2017				
10	TRD	submission 2016				
11	ECAL	submission 2016				

CERN SPS Testbeam (Nov2015) Pb + Pb @ 30 A GeV

MRPC setup in H4 beamline with 20 different counter types, 1000 timing channels, flux on counter surfaces 5 - 10 kHz / cm²

System time resolution of 80 ps achieved with conductive glass electrodes (Yakang glass, Beijing – Tsinghua Univ.).

CBM perspectives

GSI/FAIR strategy: staged realization along the beam towards MSV

Search for deeply bound KNC states will be continued at FAIR with unprecedented rates.

FAIR Phase 0 experiments

Install, commission and use 10% of the CBM TOF modules including CBM read-out chain at STAR/RHIC (BES II 2019/2020).

$\sqrt{s_{_{NN}}}$ (GeV)	$\sqrt{s_{_{NN}}}$ (GeV)	Т
Collider	Fixed Target	AGeV
62.4	7.74	30.3
39	6.17	18.6
27	5.18	12.6
19.6	4.47	8.9
14.5	3.90	6.3
11.5	3.53	4.8
9.1	3.20	3.6
7.7	2.99	2.9
	$\sqrt{s_{NN}}$ (GeV) Collider 62.4 39 27 19.6 14.5 11.5 9.1 7.7	$\sqrt{s_{NN}}$ (GeV) $\sqrt{s_{NN}}$ (GeV)ColliderFixed Target62.47.74396.17275.1819.64.4714.53.9011.53.539.13.207.72.99

Anticipated statistics: ~ 10⁸ events each

CBM Collaboration: 60 institutions, ~530 members

Croatia: Split Univ.

CCNU Wuhan Tsinghua Univ. USTC Hefei CTGU Yichang

Czech Republic:

CAS, Rez Techn. Univ.Prague

France:

IPHC Strasbourg

Hungary:

KFKI Budapest Budapest Univ.

Germany:

Darmstadt TU FAIR Frankfurt Univ. IKF Frankfurt Univ. FIAS Frankfurt Univ. ICS GSI Darmstadt Giessen Univ. Heidelberg Univ. P.I. Heidelberg Univ. ZITI HZ Dresden-Rossendorf KIT Karlsruhe Münster Univ. Tübingen Univ. Wuppertal Univ. ZIB Berlin

India:

Aligarh Muslim Univ. Bose Inst. Kolkata Panjab Univ. Rajasthan Univ. Univ. of Jammu Univ. of Kashmir Univ. of Calcutta B.H. Univ. Varanasi VECC Kolkata IOP Bhubaneswar IIT Kharagpur IIT Indore Gauhati Univ. Korea: Pusan Nat. Univ.

Poland:

AGH Krakow Jag. Univ. Krakow Silesia Univ. Katowice Warsaw Univ. Warsaw TU

Romania:

NIPNE Bucharest Univ. Bucharest

Russia:

IHEP Protvino INR Troitzk ITEP Moscow Kurchatov Inst., Moscow LHEP, JINR Dubna LIT, JINR Dubna MEPHI Moscow Obninsk Univ. PNPI Gatchina SINP MSU, Moscow St. Petersburg P. Univ. Ioffe Phys.-Tech. Inst. St. Pb.

Ukraine:

T. Shevchenko Univ. Kiev Kiev Inst. Nucl. Research

26th CBM Collaboration meeting in Prague, CZ 14 -18 Sept. 2015

Summary / Conclusion

Deeply bound KNC are an intriguing way towards cold dense baryonic matter.

 Λp final state:

```
\SigmaN – cusp seen in Al + Al and Ni + Ni at 1.9 AGeV, X2265 (DISTO, E27) not found.
```

Λd final state:

Correlation signal seen in Ni + Ni reactions at 1.9 AGeV, non – thermal phase space population non – monotonous centrality dependence non – trivial mixed event background determination selection bias (?) needs further work no signal seen in AI + AI at 1.9 AGeV

Statistical significance can be improved with CBM by factor 100.

New data expected from RHIC/STAR BESII run in 2019/2020.

Thank you!

Experimental strangeness program of FOPI

Reference data from elementary reactions

 K^0 , Λ production and phase space distributions in π^- + C, Al, Cu, Sn, Pb @ 1.15 GeV/c, (S273, 2004)

 K^0 , K^+ , K^- , ϕ , Λ production in @ 1.7 GeV/c, (S339, 2011) π^- + LH₂, C, Pb

Systematics of strangeness data from heavy-ion reactions

 K^0 , K^+ , K^- , ϕ , K^* , Λ , $\Sigma^*(1385)$ production and kaon flow Search for kaonic bound states

System	beam energy		events (proposal, year)
Ni + Ni	1.93 AGeV,	100M	(S261, 2003)
AI + AI	1.91 AGeV,	200M	(S297, 2005)
Ni + Ni	1.91 AGeV,	80M	(S325, 2008)
Ni + Pb	1.91 AGeV,	100M	(S338, 2009)
Ru+ Ru	1.7 AGeV,	210M	(S338, 2009)

Search for exotica in elementary reaction

existence of ppK⁻ - bound state

80M (S349, 2009) 3 GeV. p + p

T. Yamazaki's coauthored FOPI publications

SiΛvio: A trigger for Λ-hyperons FOPI Collaboration (Robert Münzer (Munich, Tech. U., Universe) et al.). Jul 29, 2013. 12 pp. Published in Nucl.Instrum.Meth. A745 (2014) 38-49

Measurement of K*(892)0 and K0 mesons in Al+Al collisions at 1.9A GeV FOPI Collaboration (X. Lopez (Clermont-Ferrand U.) et al.). Jun 2010. 5 pp. Published in Phys.Rev. C81 (2010) 061902

Search for the Kaonic Nuclear State, K- p p, in the exclusive p p ---> p Lambda K+ channel FOPI Collaboration (K. Suzuki (Stefan Meyer Inst. Subatomare Phys.) et al.). 2009. 3 pp. Published in Nucl.Phys. A827 (2009) 312C-314C

Measurement of the in-medium K0 inclusive cross section in pi- -induced reactions at 1.15-GeV/c FOPI Collaboration (M.L. Benabderrahmane (Heidelberg U.) et al.). Jul 2008. 4 pp. Published in Phys.Rev.Lett. 102 (2009) 182501

Sub-threshold production of Sigma(1385) baryons in AI + AI collisions at 1.9-A-GeV FOPI Collaboration (X. Lopez et al.). Oct 2007. 5 pp. Published in Submitted to: Phys.Rev.C (2007)

Hadrons in Medium

GOR – relation:
$$m_{\pi}^2 f_{\pi}^2 = - \langle m_q \rangle \langle \overline{q}q \rangle$$

In-medium effects in finite systems: 'Trivial'

Fermi motion Pauli blocking Collisional broadening

'Non-trivial'

Partial restoration of chiral symmetry Meson – baryon coupling Bound states Modified properties of hadrons in dense baryonic matter?

Μ*(ρ)	(mass)
Γ* (ρ)	(width)
σ* (ρ)	(cross section)

KN – interaction

Summary: KN – interaction is attractive at finite densities, but strength (depth of potential) is unclear

Kaons in hadronic matter spectral function of antikaons in dense matter

Particle Identification

Detectors used: STS, TOF, TRD

Particle acceptance central Au+Au collisions at 4 A GeV

Particle acceptance central Au+Au collisions at 10 A GeV

Status of the search for kaonic clusters in heavy ion collisions with FOPI

Introduction

strangeness in dense baryonic matter kaonic cluster production in HI collisions

Experimental details

kaon flow event mixing technique

Correlation Results

Λ + p - correlations Λ + π - correlations (Λ + d - correlations)

Outlook

Conclusions

IPNE Bucharest, Romania CRIP/KFKI Budapest, Hungary LPC Clermont-Ferrand, France GSI Darmstadt, Germany FZ Rossendorf, Germany Univ. of Warsaw, Poland IMP Lanzhou, China SMI, Vienna, Austria ITEP Moscow, Russia Kurchatov Institute Moscow, Russia Korea University, Seoul, Korea IReS Strasbourg, France Univ. of Heidelberg, Germany RBI Zagreb, Croatia TUM, Munich, Germany

Experimental program

Search for kaonic bound states

System	beam energy		events	(proposal, year)
Ni + Ni	1.93 AGeV,	100M	(S261, 2	.003)
AI + AI	1.91 AGeV,	200M	(S297, 2	.005)
Ni + Ni	1.91 AGeV,	80M	(S325, 2	.008)
Ni + Pb	1.91 AGeV,		100M	(S338, 2009)
Ru+ Ru	1.7 AGeV,		210M	(S338, 2009)

Search for exotica in elementary reaction

existance of ppK⁻ - bound state

p + p 3 GeV, 80M (S349, 2009)

FOPI III (2008 – 2010) with improved PID

PID with FOPI III

Significant improvement of Signal-over-Background (S/B) ratio.

Extension of Phase-space with TOF - PID

Kaon – flow measurements

directed flow:

Ni+Ni @ 1.91 AGeV (2008 data) σ_{trig}/σ_{reac}=40%

Theoretical expectation (HSD)

For K⁻ no consistent description yet by transport models. HSD – E. Bratkovskaya et al. (Frankfurt, Giessen) IQMD – C. Hartnack et al. (Nantes)

Evidence for (ppK⁻)_{bound}

V.K. Magas, E. Oset, et al., nucl-th/0601013

Reanalysis of old DISTO data:

T. Yamazaki, et al., Exa2008, Vienna, Sep. 2008, arXiv:0810.5182 (nucl-ex)

 $p + p \rightarrow K^{+} + X \rightarrow K^{+} + \Lambda + p \text{ at } 2.85 \text{GeV}$

Production probability: $X / \Lambda = 0.1$ Peak parameter: $M = 2.265 \pm 0.002 \text{ GeV}$ $\Gamma = 118 \pm 0.008 \text{ MeV}$

Antikaon Cluster Production in HI collisions

IQMD, C.Hartnack, Nantes

Central density in HI collisions from transport model calculations:

 ρ_{max} =2-3 · ρ_0

Possible mechanism for cluster formation:

T.Yamazaki et al., NPA738,168 (2004)

1) Kaon production during high density phase

2) capture of K⁻ in deep trapping centers

Status 2006 (Paul Kienle Symposium, Vienna)

Λ – reconstruction

143907

1.131

0.3554E-01

1.225

Minv(GeV)

0.1367E-01

0.4478E-02

2238. / 48

1244405

1.118

6686.

1.116

1.25

Entries

1.2

Entries

Mean

RMS

P1

P2

P3

 χ^2/ndf

1.175

Mean

RMS

Signal-over-background depends on selection cuts

					System	Ni+Ni	Ni+Ni		li Al+Al		p+CH ₂		p+CD ₂	
	J	le la companya de la companya			Cut	"p"	"s"	"p"	"s"	"p"	"S"	"p"	"s"	
1.075	1.1	1.125	1.15	1.175	Signal _{Minv(GeV)}	136k	75k	207k	109k	8760	4420	2390	1275	
					S/B	1.6	6.0	2.7	8.9	6.0	17.6	4.6	15.5	
					Signal scaling	2	1	1.9	1	2.0	1	1.9	1	
					Background scaling	8	1	6.3	1	5.8	1	6.3	1	

71st Fujihara Seminar, Shimoda, 7.7.2016

Ni+Ni @ 1.93 AGeV (2003)

1.125

1.15

Counts

Counts

9000

8000

7000

6000 5000

4000

3000

2000 1000

8000

7000

6000

5000

0

0 1.05 ff=0.116113

nev=74245494

1.075

Total=80016

Signal=75190

S/B=6.33499

Significance=254.83

P(A)=0.00101272

1.1

Reconstruction of short lived resonances in HI collisions

X. Lopez et al. (FOPI), PRC 76, 052203(R) (2007) $\Sigma^* \rightarrow \Lambda + \pi \quad (88 \pm 2\%)$ $K^* \rightarrow K + \pi$ (88 ± 2%) $\rightarrow \mathbf{p} + \pi^{-} + \pi$ Г = 39.4 MeV $\Gamma = 50.7 \text{ MeV}$ = 5 fm**C**τ $c\tau = 4 \text{ fm}$ E^{thr}_{NN}=2.33 GeV E^{thr}_{NN}=2.75 GeV (counts) 30000 Entries 1204893 counts) 0.8493 Mean $\Lambda \pi^{-} + \Lambda \pi^{+}$ BMS 0.1148 Λ 15000 15 $dN/dM (\times 10^3$ Wp 20000 10000 1.13 5000 M (GeV/c²) 10000 1250 1000 S = 3115 ± 480 S = 6112 ± 850 $S/B = 0.027 \pm 0.005$ $S/B = 0.017 \pm 0.002$ 1000 750 $SIGNIF = 9.1 \pm 1.4$ **SIGNIF** = 10.1 ± 1.4 750 MEAN = 890 + 6 MeV/c² $MEAN = 1387 \pm 5 MeV/c^2$ 500 500 $\pm 12 \text{ MeV/c}^2$ $\Gamma = 51 \pm 13 \text{ MeV/c}^2$ 250 250 C 0 -250 1.2 1.3 1.5 1.4 1.6 1.7 1.8 1.9 0.6 0.7 0.8 0.9 1.1 1.2 1 M (GeV/c²) M (GeV/c²)

Exp. Conditions: Al+Al at 1.92 AGeV, 21 d running (Aug 2005) 5 · 10⁸ recorded events 10 TByte raw data

FOPIs reconstruction method and background construction by event mixing works for wide resonances.

Masses and widths of Σ^* and K^{*} consistent with PDG values.

 Σ^{*} (1385) subthreshold production,

71st Fujihara Seminar, Shimoda, 7.7.2016

dN/dM (counts)

N.Herrmann, Univ. Heidelberg

48

Search for ppK⁻ (2003/2005 data)

Excess observed in Ni+Ni and Al+Al with statistical significance of ~ 5

in 2 independent analysis.

Yield located in spectator/fireball interface region y < 0.65 (like non-strange clusters).

89410

1.118

2659.

1.116

0.1522E-01

0.3905E-02

New data S325/S325e (2007/2008)

System	Ni+Ni (2003)		AI+AI(2005)		Ni+Ni (2007)		Ni+Ni(2008)	
Cut	" p "	"s"	" p "	"s"	"p"	"s"	"p"	"s"
Signal	136k	75k	207k	109k	20k	10k	54k	27k
S/B	1.6	6.0	2.7	8.9	2.4	8.7	3.4	12.2
Signal scaling	2.0	1	1.9	1	2.0	1	2.0	1
Background scaling	6.8	1	6.3	1	7.2	1	7.2	1

2007/2008 data triggered with less stringent centrality requirement

Λp – invariant mass (2008 data)

Peak present in 2008 data with same cuts as for 2003/2005 data, S/B larger than in 2003 data, Additional strength in the mass range 2.2 < M_{inv}<2.3 GeV possible.

Strange Dibaryon

Fig. 6. Inclusive missing mass spectra for pp → K⁺X at 2.7 GeV incident energy. The kaon laboratory scattering angles are 12.6°, 16.1°, 20.0° and 23.5°. The bins are 1.5 MeV wide. The resolutions (FWHM) are approximately 3 MeV (12.6°), 4 MeV (16.1°), 3.5 MeV (20.0°) and 5 MeV (23.5°). The dashed lines show the 3-body phase-space to which a fitted gaussian distribution centered at 2136 MeV was added at 20.0°. This peak is also shown separately.

Peak position consistent with p+p scattering data: $M=2.135 \pm 0.004$ GeV Suggested interpretation: D_t (q4 x q2 structure)

A.T.M. Aerts and C.B. Dover, Phys. Lett. B146, 95 (1984) **Object also seen in K⁻ + d** $\rightarrow \Lambda p\pi^{-}$ (O. Braun et al., NPB 124,45 (1977)) **Interpretation:** ΣN – bound state H(2129)

Transport model calculations including Cusp in K⁺ - production ongoing Yield –ratio (Λ p)/ Λ =0.024 consistent with thermal model prediction: 0.018 (x3)

Particle yields at freeze-out

Thermal equilibrium model works surprisingly well for Al+Al with γ_s =1 !

Strange Cluster search in HI - collisions

since 2003: ppnK⁻??

Yield of single strange clusters per Λ predicted to peak at lowest beam energies Abundance larger than Ξ – baryon

More data are needed ...

Ad – correlation (2008 – data)

Sideband analysis: 10 MeV < $|M_{\Lambda}^{rec} - m_{\Lambda}^{PDG}| < 20$ MeV - no enhancement observed.

Ad – correlation (2008 – data)

Current status of analysis: (using same selection cuts And procedures as in 2003)

Excess statistically consistent with 2003 – data.

Statistics not enough to resolve narrow structures.

Slightly more data available (~factor 4, although different reactions: Ni+Pb, Ru+Ru)

Significantly more data needed \rightarrow new experiment

Strange baryon program with FOPI @ GSI

IPNE Bucharest, Romania CRIP/KFKI Budapest, Hungary LPC Clermont-Ferrand, France GSI Darmstadt, Germany FZ Rossendorf, Germany Univ. of Warsaw, Poland IMP Lanzhou, China TUM, Munich, Germany + P. Kienle (TUM), T.Yamazaki(RIKEN) ITEP Moscow, Russia Kurchatov Institute Moscow, Russia Korea University, Seoul, Korea IReS Strasbourg, France Univ. of Heidelberg, Germany RBI Zagreb, Croatia SMI Vienna, Austria

Objectives:

Strangeness in

HI collision

pion induced reactions

proton-proton collisions

Further talks:

L. Fabietti: Wed. afternoon O. Hartmann: Fri. morning

A. Andronic, R. Averbeck, Z. Basrak, N. Bastid, M.L. Benabderramahne, P. Bühler, R. Caplar, M. Cargnelli, M. Ciobanu, P. Crochet, I. Deppner, P. Dupieux, M. Dzelalija, L. Fabbietti, F. Fu,
P. Gasik, O. Hartmann, N. Herrmann, K.D. Hildenbrand, B. Hong, T.I. Kang, J. Keskemeti, Y.J. Kim, M. Kis, M. Kirejczyk, P. Koczon, M. Korolija, R. Kotte, A. Lebedev, K.S. Lee, Y. Leifels, P.-A. Loizeau, X. Lopez, J. Marton, M. Merschmeyer, D. Moisa, R. Muenzer, M. Petrovici, K. Piasecki, F. Rami, V. Ramillien, A. Reischl, W. Reisdorf, M.S. Ryu, A. Schüttauf, Z. Seres, B. Sikora, K.S. Sim, V. Simion, K. Siwek-Wilczynska, K. Suzuki, Z. Tyminski, K. Wisniewski, Z. Xiao, H.S. Xu, J.T. Yang, I. Yushmanov, A. Zhilin, Y. Zhang, J. Zmeskal

Summary / Conclusion

Strangeness production close to threshold is still not understood.

New RPC TOF barrel operational with $\sigma_{t,system} \sim$ 90 ps.

New data from FOPI at SIS18

- Short lived strange resonances: φ, K*(892), Σ*(1395)
 chemical equilibrium in AI + AI @ 1.9 AGeV ?
- Flow of charged kaons strong centrality dependence of K⁻ - sideflow
- Some indications for strange dibaryon production (H1⁺, D_t) first observation of strange dibaryon in HI – collisions
- Search for multi-baryonic strange clusters (ppnK⁻, pppK⁻) ongoing.

Serious theoretical effort necessary to interpret available and coming data.

Strange hadrons, especially strange multi-baryonic clusters, are an exiting possibility towards the properties of cold dense baryonic matter and non-perturbative QCD.

Strangeness physics from 2-10 AGeV must be continued/ revisited with high statistics! => FOPI(?)/HADES@SIS18/GSI => HADES/CBM @ SIS100/FAIR

Strange cluster search in HI - collisions

since 2003: ppnK⁻??

Rapidity constraint necessary for statistical significance, Width much larger than early predictions, Abundance larger than Ξ – baryon (consistent with Statistical Hadronisation Model).

More data are needed ...

Status ~ 2002

Y.J. Kim, FOPI (GSI)

Evidence for attractive Kaon potential

QCD – phase diagram

Status of $ppnK^- \rightarrow \Lambda d$ - search

		M (MeV)	Γ (MeV)	Ρ/Λ	P/(IN)	Sign (σ)
FOPI	HI: AI+AI	-	-	-	-	-
	HI: Ni+Ni	3149 ± 15	100 ± 49	1.3 [.] 10 ⁻²	1.0 ·10 ⁻⁵	4.9
FINUDA	K ⁻ stopped on ⁶ Li	3251 ± 6	37 ± 14		4.4 ·10 ⁻³	3.9
KEK E549	K ⁻ stopped in LHe	+	+	-	-	-
Obelix	\overline{p} stopped in ⁴ He	3190 ± 15	< 60.		>0.4 10-4	2.6