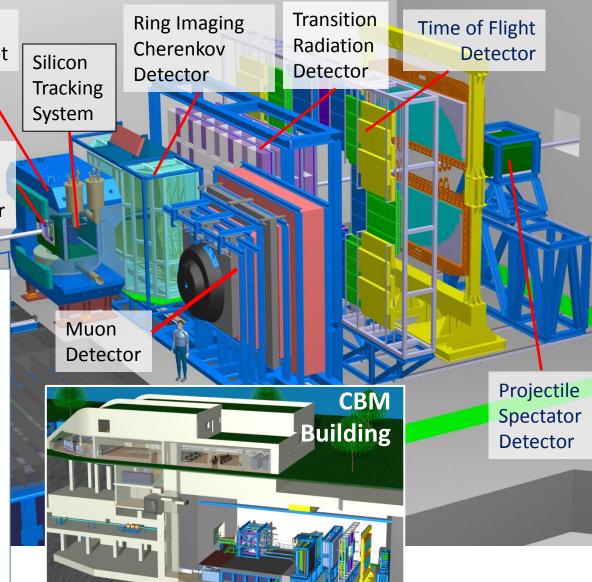


FAIR - Facility for Antiproton & Ion Research

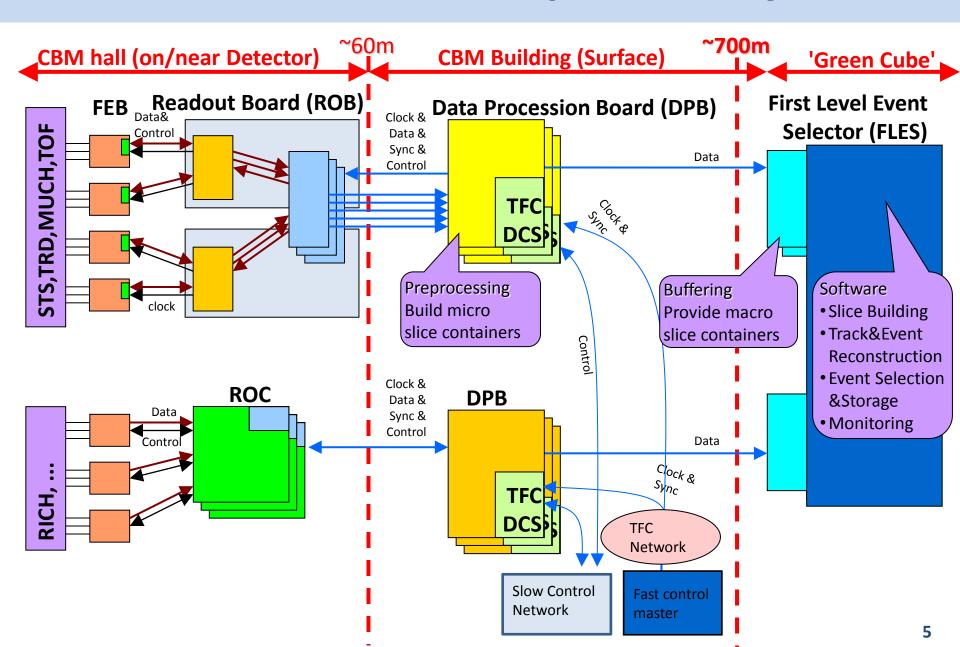
FAIR Construction Site

The CBM Experiment

Goal:

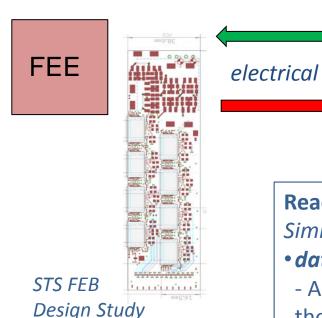

- exploration of the QCD phase diagram in the region of very high baryon densities
- access to rare probes

Dipole Magnet


Micro
Vertex
Detector

Features

- fixed target experiment
- up to 10 MHz Au+Au interactions
- self-triggering front-end electronics
- Free-streaming data processing and acquisition system
- 4D event reconstruction and fast selection algorithms
- high granularity and radiation tolerant detectors and FEE



Readout and Data Acquisition System

Building Blocks of the Readout Chain

optical

Frontend Boards (FEB)

detector specific functionality and designs of ASICs and boards

Integrated with or located close to detector elements

Readout Boards (ROB)


ROB

Similar functionality

- data aggregation
 - ASICs: several ten thousand electrical links
- data readout
 - optical readout interface
- FE ASIC control path
- clock distribution and synchronization

CERN GBTX / Versatile Link

DPB Prototype: AFC-K

WUT Warsaw; TWEPP2015

Data Processing Board (DPB)

CBM common hardware platform:

- FPGA based
 - data formatting
 - preprocessing
- timing and control interfaces
- interface to FLES (FLIB)
- in CBM building (surface)

GBT Based Readout Systems

- Why?
 - Radiation: lifetime doses up to several 100kRad
 - Magnetic field (STS)
- Who?
 - STS and MUCH: STS/MUCH-XYTER
 - TRD: SPADIC
 - TOF: GET4
- What?
 - Frontend ASICs with E-Link interfaces
 - ROB stage with
 - "master" GBTx with VTRX providing down- and uplink
 - 0-3 units of (2 transmitter GBTX + VTTx) depending on detector specific and local requirements in terms of readout bandwidth
 - Common DPB FPGA implementing the backends for FE ASIC and GBTX control
 - Dedicated communication protocols between DPB FPGA and FE ASICs
 - STS-HCTSP for STS, MUCH
- How?
 - 3 step procedure
 - tests and prototyping with existing hardware (VLDB)
 - common CBM prototype: C-ROB
 - system specific ROB adaptations

Poster K. Kasinski, R. Kleczek (AGH) on Wed.

Specifics of GBT Usage in CBM

- GBTX usage in readout systems based on custom frontend ASICs
 - Downlinks: FE control (both slow control and fast control)
 - Downlinks shared among multiple devices
 - Uplinks:
 - Hit data readout
 - STS in large areas rate dominated → 320MHz readout links
 - TOF dominated by number of readout channels → 80MHz readout links
 - Control responses integrated in data stream
 - no trigger distribution
 - Clock and time synchronization
 - Clock distribution to FE ASICs (phase adjustable clocks)
 - Deterministic latency allows for synchronization messages in control stream
- ROBs
 - Common prototype and detector specific ROBs
 - STS, MUCH, TRD: use widebus frames
 - ROBs with typically 3x14 and up to 7x14 uplinks
 - Custom protocols
 - Implemented for STS and MUCH in the STS/MUCH-XYTER v2 ASIC
 - reused for SPADIC2.0; to be fully adapted in rev.2.1

Misc

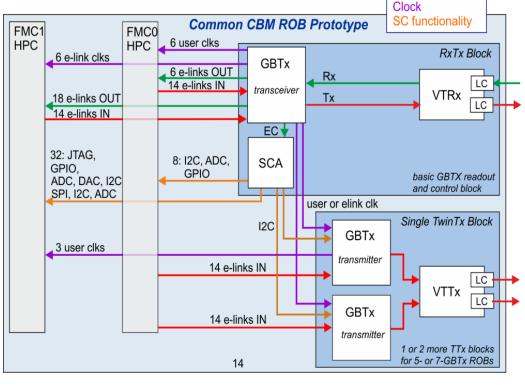
- CBM is no LHC system:
 GBTX for CBM from dedicated production batch with 40MHz (sharp) oscillator
- AC coupled E-Links (required in case of STS)
- GBTx emulator

Poster W. Zabolotny (WUT) on Tue.

The CBM Common Readout Board

Common CBM prototype Readout Board (C-ROB)

for prototyping of all GBT based readout chains in CBM


• Full GBTx, SCA and Versatile Link functionality required for readout and control:

final ROBs with different form factor, connectors, cooling features, number of functional units

3 GBTx ASICs

connect up to 40 STS-XYTER devices at 320 Mbps: hit readout, control responses

- 1 Optical Transceiver (VTRx) and
 - 1 Twin Transmitter (VTTx)
 - 3 optical uplinks
 - 1 optical downlink at 3.2 Gbps for control
- 1 GBT SCA
 - I2C interface for control of slave GBTx
 - additional multi purpose SCA functionality
- FMC connectors with frontend connectivity
 - → flexibly connect various FEE prototypes FMC0 – sufficient for STS, MUCH, TRD
 - subset of downlinks, clocks; all 320MHz E-Up-Links
 - Small subset of SCA functionalityFMC1
 - additional 80MHz E-Links (TOF); more SCA

Status:

Layout in progress

Expected for end of 2016

Uplink

Downlink

CROB Applications

	STS	MUCH	TRD	TOF
Readout	40 E-Links IN at 320 MHz – 1 to 5 FEB; 8 to 40 ASICs	36 E-Links IN at 320 MHz 9 FEB with 18 ASICs	14 + 1 x (14+14) E-Links IN at 320 MHz (for prototype testing)	24 E-Links IN at 80 MHz 24 ASICs 1 GBTx only
	Widebus frame mode for			
Control & Clock	5 E-Link OUT (for up to 5 FEBs)	9 E-Link OUT (for 9 FEBs)	6 E-Link OUT	24 E-Link OUT (for 24 ASICs)
	5 phase adjustable clocks (for up to 5 FEBs)	9 phase adjustable clocks (for 9 FEBs)	6 phase adjustable clocks	
	Alternatively E-Link clock			
SCA	I2C for slave GBTx control Some ADC and GPIO chair	JTAG + 12 GPIO for FPGA scrubbing		
	FMC0	Uses both FMC	FMC0	Uses both FMC

Modular Test Chains

Usage of

- compatible E-Link interfaces on FMC connectors of both CROB and DPB
- firmware emulators in parallel to hardware devices
- multiple firmware flavors in DPB FPGA backend

allows flexible testing of various aspects of the readout chains:

Example: STS

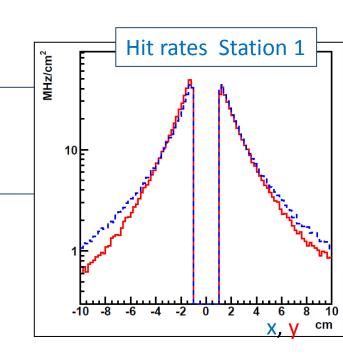
Purpose	FEB	ROB	DPB Flavor
ASIC protocol testing	STS-XYTER emulator		eDPB
GBTx testing		VLDB	vldbDPB
ASIC chain dry run	STS-XYTER emulator	VLDB	vldbDPB
ASIC testing	STS-XYTER FEB-1		eDPB
ASIC chain	STS-XYTER FEB-1	VLDB	vldbDPB
ASIC functional chain	STS-XYTER FEB-1/8	C-ROB	stsDPB
Final chain	STS-XYTER FEB-8	STS-ROB-3	stsDPB

System Specific ROBs

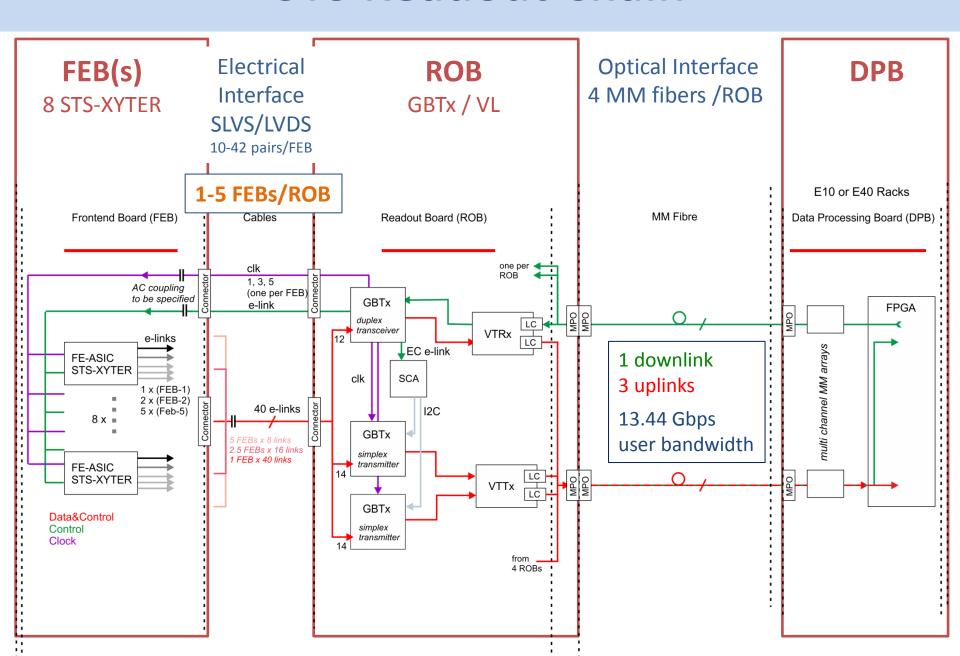
Readout boards for the various systems

STS

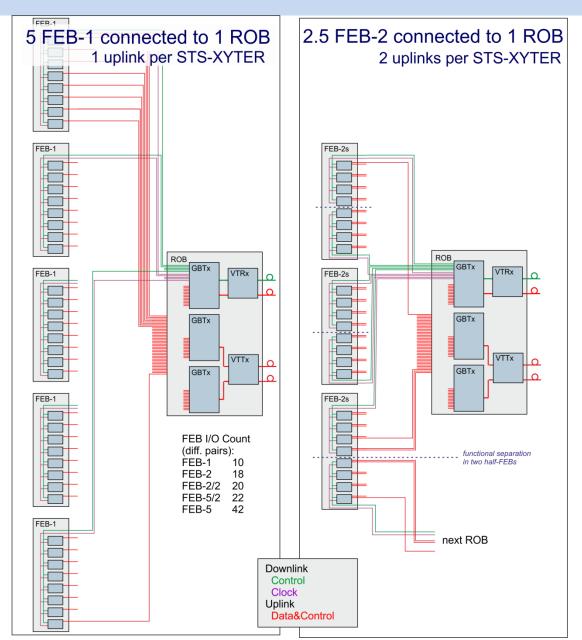
TOF

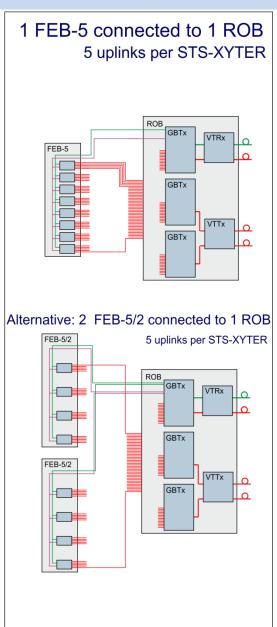

TRD

will require adjustments with respect to the C-ROB for the final readout chains in the CBM setup...


Silicon Tracking System

GBT use case


- connect a variable number of frontend ASICs to optical readout links
- Space efficient solution
 - **STS-ROB-3**, functionally equivalent to C-ROB
 - STS case was starting point for C-ROB
 - FEBs with 8 STS-XYTER ASICs
 - 1 FEB for per 1024 channel strip sensor
 - Sensors of variable length and connected FEBs at individual biasing potential
 → AC coupled E-Links to ROBs
 - FEB-ROB Connectivity
 - 40 (of the 42available) E-Links IN on ROB map to 5, 2.5 or 1 FEB per ROB using
 1,2 or 5 readout links (1 to 5 links configurable) per ASIC depending on the data load
 - One control loop per FEB



STS Readout Chain

STS FEB-ROB Connectivity

ROB Integration

Integration of STS-ROBs on sides of STS detector box

Challenges

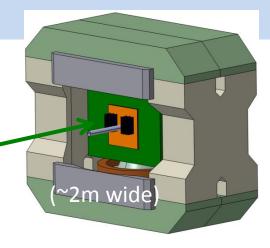
- Radiation
 - up to 100krad and 5x10¹³ n_{eq}/cm² in ROB locations over expected total operation time with SIS100
 - higher in regions of delta electrons

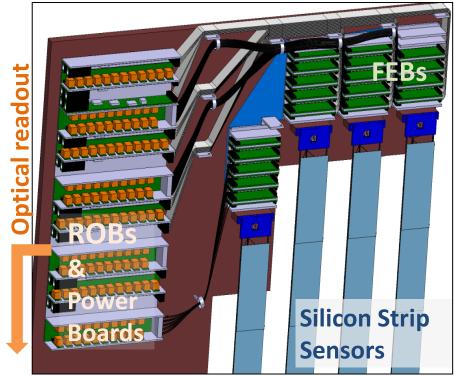
Magnetic Field

operation inside 1T dipole magnet

Space

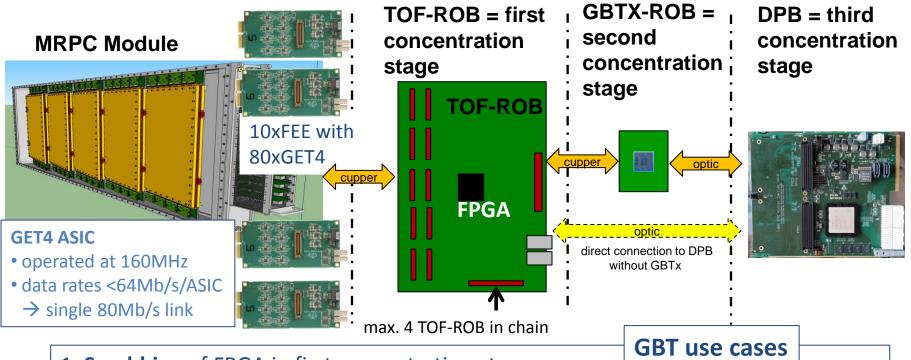
- ROB size: approx. 83mm between side cooling plates of adjacent units
- FEB connections: routing volumes and topology, connector size

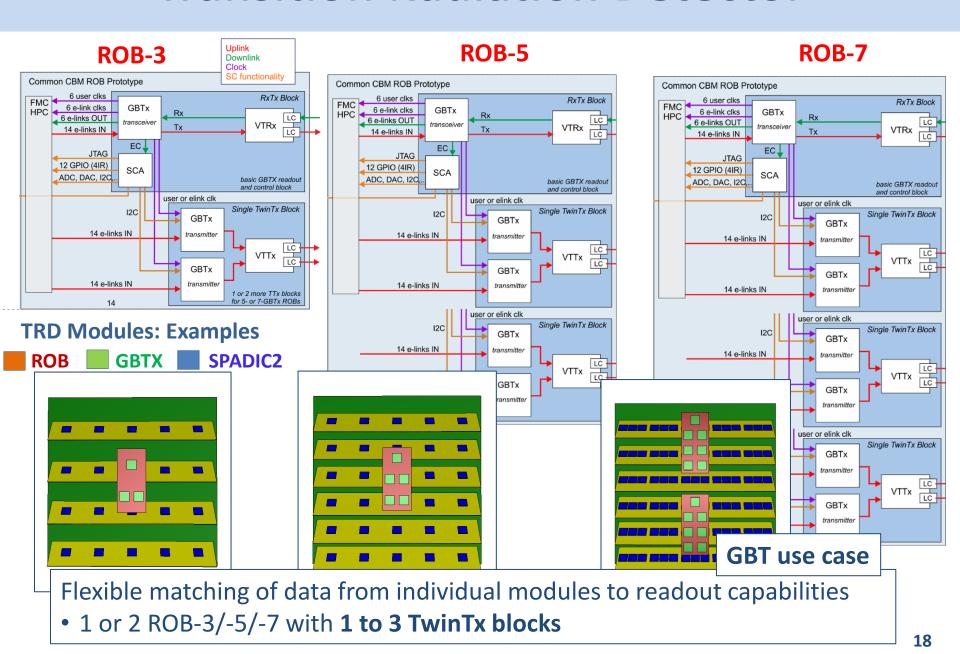

Cooling


sensors operated at <= -5° Celsius

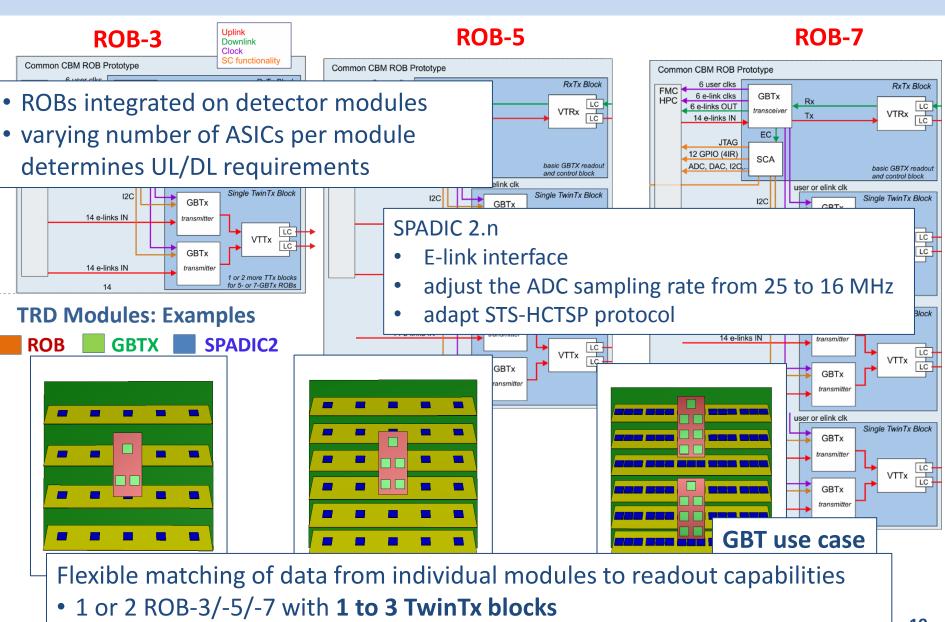
Powering Scheme

- FEBs operated at individual sensor bias potentials
 - → AC coupling of FEB-ROB e-links


STS Box inside dipole magnet


Quarter Layer (every 2nd ladder)

Time of Flight Detector



- 1. **Scrubbing** of FPGA in first concentration stage
 - JTAG chain and serial I/O from SCA to FPGAs on 4 TOF-ROB
 - TOF-ROBs placed at larger radial distances for reduced irradiation
- 2. Second data concentration stage
 - readout of up to 4 TOF-ROB units with one GBTX-ROB-1
 - TOF-ROBs in high rate areas (no concentration from multiple TOF_ROBs) may use direct optical link to DPB
 - alternatively use GBTX stage directly as first concentrator and omit FPGA stage

Transition Radiation Detector

Transition Radiation Detector

Status and Timeline

- latest ASIC versions implementing the E-Link interfaces and compatible protocols available now for testing
- C-ROB available from early 2017 → initial tests of full readout chains
- full prototype readout chains in test beam times with larger detector setups requiring aggregation
- Phase0 (i.e. pre SIS100) experiments
 - 10% of TOF@STAR/RHIC for BES II
 - miniCBM@GSI/SIS18:
 full size detector modules and readout chains up to FLES
- development of detector specific ROBs
- CBM installation and commissioning: 2020/21

GBT Usage in CBM Detectors - Overview

		STS	MUCH (Station 1&2)	TOF	TRD		
Technology		Silicon strip	GEM	MRPC	TRD		
Frontend ASIC		STS /MUCH-XYTER 128 channels <i>AGH Cracow</i>	STS/ MUCH -XYTER 128 channels <i>AGH Cracow</i>	GET4 4 channels GSI	SPADIC 32 channel ZITI Univ. Heidelberg		
Readout		1 to 5 E-Links (configurable) at 320MHz		1 E-Link (compatible) at 80 MHz	2 E-Links at 320MHz		
Configuration & SC & FC		DL: dedicated E-Link shared by ASICs UL: all E-Links, shared with data		DL: control UL: control in data stream	DL: shared E-Link UL: single E-Link shared with data		
Clock		Phase adjustable clock@160MHz		Dedicated distribution of 160MHz clock(tbc)	Phase adjust. Clk or E- Link Clk at 160MHz		
Channels		1.8 million	249k	100k	245k		
No. E-Links		1.800 20.000	1.944 7.776	25.000 ASIC links 25.000 ASIC links	<7.500 15.000		
Versatile Links		600 1.800	216 648	<= 625 <=625	240 1.152		
Note: all numbers are for experimental scenario of 1e7 Au+Au@10AGeV (SIS100) unless stated differently							

CBM Contributions to TWEPP 2016

- A. Rost (TU Darmstadt), A flexible FPGA based QDC and TDC for the HADES and the CBM calorimeters; Oral Tue. 15:40
- J. Michel (Univ. Frankfurt), Electronics for the RICH Detectors of the HADES and CBM Experiments; Poster I3
- V. Shumikhin (NRNU MEPhI), 6-Bit Low Power Area Efficient SAR ADC for CBM MUCH ASIC; Poster F4
- E. Atkin (NRNU MEPHI), Development of 32-Channel System for Processing Asynchronous Data from the CBM GEM Detectors; Poster C6
- W. Zabolotny (Warsaw University of Technology), Versatile ASIC and Protocol Tester for STS/MUCH-XYTER2 in CBM Experiment; Poster N4
- J. Lehnert (GSI), GBT based readout in the CBM experiment; Oral Wed. 15:15
- E. Malankin (NRNU MEPhI), Readout Channel with Majority Logic Timestamp and Digital Peak Detector for Muon chambers of the CBM Experiment; Poster E3
- K. Kasiński (AGH), System-Level Considerations of the Front-End Readout ASIC in the CBM Experiment from the Power Supply Perspective; Poster N5
- R. Kleczek (AGH), Front-End and Back-End Solutions in the CBM STS Readout ASIC;
 Poster E1
- L. Meder (KIT), A Versatile Small Form Factor Twisted-Pair TFC FMC for mTCA AMCs; Poster 18

