# CBM detector and electronics tests at COSY

Johann M. Heuser

GSI Helmholtz Center for Heavy Ion Research GmbH,
Darmstadt, Germany

for the CBM Collaboration



4<sup>th</sup> COSY Beamtime Advisory Committee Meeting, IKP, FZ Jülich, 27 June 2016



### Outline

Update on the application for beamtime at COSY in 2016 and 2017:

- 1) Detector tests: September 2016 (1 week)
- 2) Detector tests: February/March 2017 (2 weeks)
- 3) Electronics tests: April 2017 (1 week)

### **CBM** detector tests

#### **Original proposal:**

- Test final-prototype microstrip sensors for the CBM Silicon Tracking System towards their tracking efficiency:
  - using a new reference telescope and a cooled station comprising the sensors under test;
- Test full-size prototype GEM detectors for the CBM muon detection system for efficiency, gain uniformity and cluster sizes as a function of beam rate and varying high voltage.

calendar week 35 (August 2016)

The set-up will comprise a completely new data acquisition chain:

- n-XYTER ASICs on updated front-end boards type F,
- new AFCK read-out boards,
- prototype interface boards FLIB to computing farm FLES,
- new software for data transport and analysis.

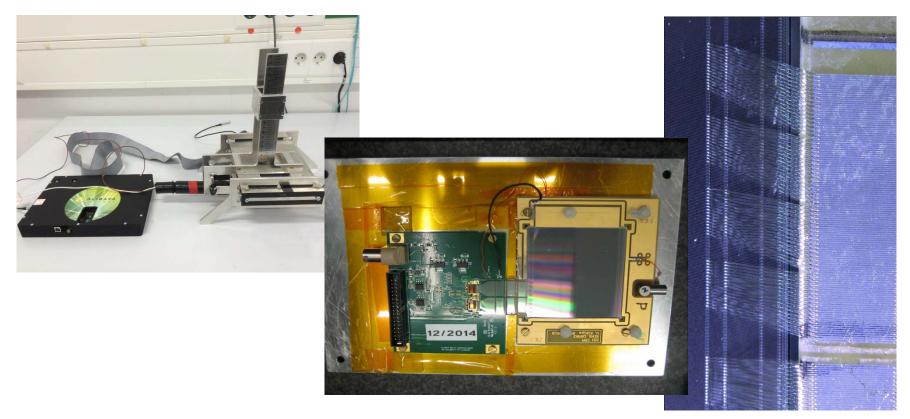
→ challenging concerning timely delivery of hardware

# 1) CBM detector test – September 2016

### **Updated proposal:**

- Use alternative set-up to study charge collection performance of STS prototype sensors:
  - ALIBAVA based read-out system
  - STS reference telescope under construction will be commissioned in laboratory at GSI
- The GEM test with two full-size chambers at COSY will be cancelled:
  - will take place during ion-beamtime at CERN in December 2016
- Instead, diamond detectors for CBM-TOF will be investigated:
  - time resolution of single crystalline CVD plates, demonstrate < 100 ps.</li>
  - Read out with an independent acquisition system based on TRB-3.

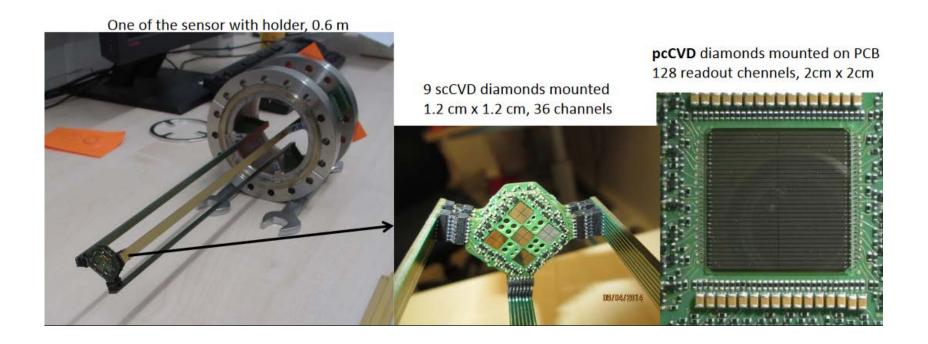
- Test of microcontroller TMS-570 for the CBM detector control system
  - against SEU requirements


shift from calendar week 35 (August 2016) to middle of September 2016

### STS set-up:

Alibava read-out system, daughter read-out board with connected sensors

#### Experimental goal:


- charge collection performance of prototype micro-strip sensors
- as function of read-out pattern and particle impact angle



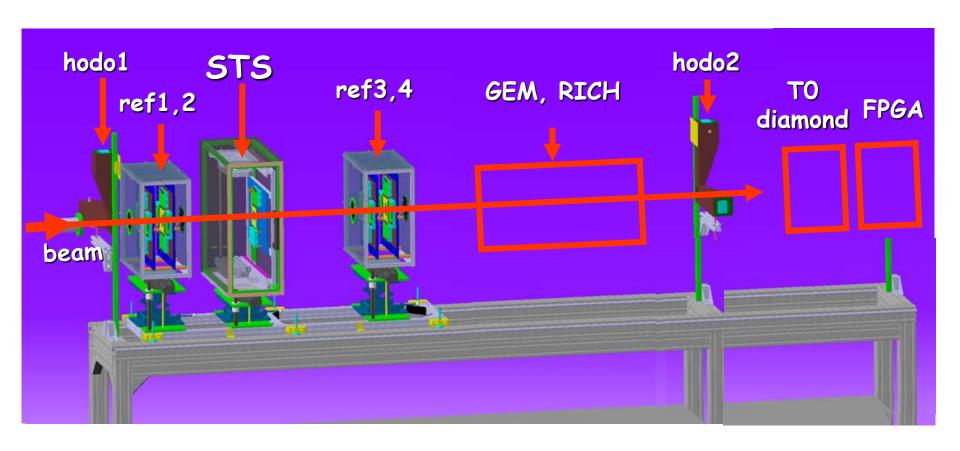
### **Diamond detector set-up:**

#### Experimental goal:

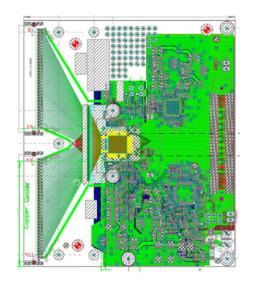
- time resolution for single crystalline diamond  $\rightarrow$  below 100 ps
- ullet prototyping a polycrystalline diamond for MIPs o signal stability, variation, time resolution



# 2) CBM detector test – Feb./March 2017


#### **Proposal:**

- Carry out the full test of final-prototype microstrip sensors towards their tracking efficiency:
  - using the new reference telescope, cooled station, DAQ and software;
- Test a small-prototype triple-GEM detector with final gap sizes and matching CERN-standard resistive chains
  - tracking efficiency as function of gap size. Read-out with the acquisition system as for the STS.
- Study poly-crystalline CVD diamond strip detectors
  - rate capability, time precision, stability.


- A first in-beam test of the new (standalone) TRB3 based FPGA-TDC DiRICH read-out chain:
  - small detector prototype with glass radiator and focusing element.
  - Cherenkov ring projected onto Multi-Anode Photo Multipliers read out with DiRICH chain.
- Tests of FPGA and microcontroller electronics for single-event effects

shift from calendar week 49 (December 2016) to a two-week block in February/March 2017

# Set-up for detector tests – Feb./March 2017



# DAQ for detector tests – Feb./March 2017



The state of the s



nXYTER FEB-F rev2

nDPB FMC



new on-line and

offline software



2x mFLES node

4x FLIB

# Test of DiRICH prototype with glass lens

Evaluation of new CBM/HADES RICH readout chain (TRB3) High-rate tests of photon detector and readout chain Ring radius ~ 5.5 cm Test integration into CBM GPTX/FLIB readout scheme 5-50 photons/ring ca.  $50 \times 50 \times 70$  cm **COSY proton beam** few GeV/c 2x MAPMT readout modules: **Spherical Borosilicate glass lense:** up to 12 MAPMTs Serves as Cherenkov radiator and focusing mirror

2x Combiner, 2x Power module

up to 24 DiRICH modules,

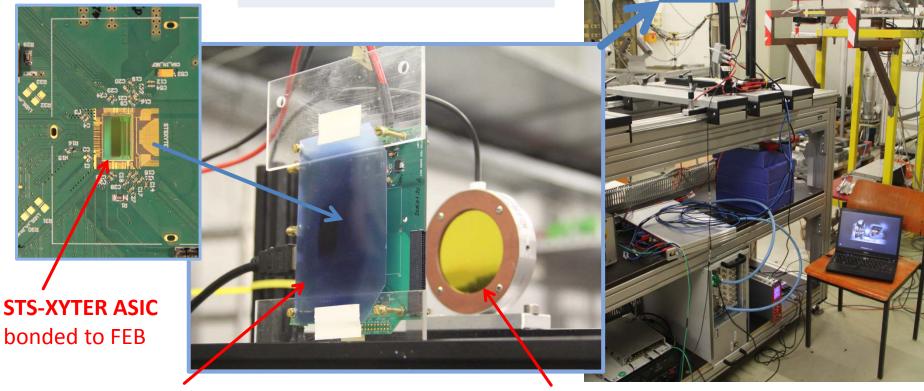
Diameter ~15 cm

Reflective Al+MgF coating on curved side

# 3) CBM electronics test – April 2017

### **Proposal:**

- Qualification of the improved DICE cell architecture with respect to Single Event Effects (SEE) in the STS-XYTER rev. 2 ASIC;
  - comparison with the cross section determined in the electronics test in September 2015 using a similar setup.
- Different FPGA electronics will be tested for single-event upsets and the effectiveness of data correction methods.
- Optional: New custom-designed LDOs will be tested for effects of total ionizing dose and fast transients.


last week in April 2017

### Setup similar to the one used in Fall 2015



FZ Jülich, COSY, JESSICA cave

~3×10<sup>9</sup> p/spill on setup



FEB with STS-XYTER v1

**Ionization Chamber with QFW based readout** 

# Beamtime application: 9/16, 3/17, 4/17

| Total number of particles and type of beam (p,d,polarization) | Momentum range<br>(MeV/c)  | Intensity or internal reaction rate<br>(particles per second)                               |                                                         |
|---------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------|
| (17,5/15.55.55.7)                                             |                            | minimum needed                                                                              | maximum useful                                          |
| p, not polarized                                              | p ~ 2700 MeV/c             | 104                                                                                         | up to 10 <sup>6</sup> (det.), 10 <sup>8</sup> (electr.) |
| Experimental area                                             | Safety aspects<br>(if any) | Earliest date of<br>Installation                                                            | Total beam time<br>(No.of shifts)                       |
| 1) <sub>JESSICA</sub>                                         | None                       | middle of September 2016<br>detector system tests:<br>STS, Diamond, DCS                     | one week, 24/7                                          |
| Experimental area                                             | Safety aspects<br>(if any) | Earliest date of<br>Installation                                                            | Total beam time<br>(No.of shifts)                       |
| 2) <sub>JESSICA</sub>                                         | None                       | February/first half of March 2017<br>detector system tests:<br>STS, GEM, Diamond, RICH, DCS | two weeks, 24/7                                         |
| Experimental area                                             | Safety aspects<br>(if any) | Earliest date of<br>Installation                                                            | Total beam time<br>(No.of shifts)                       |
| 3) JESSICA                                                    | None                       | last week of April 2017 electronics tests: front-end ASIC, FPGA, power regulators           | one week, 24/7 highest possible intensity               |

# Proton momentum 1.8 GeV/c

- Silicon detector:
  - p with 1.8 GeV/c: close to minimum-ionizing
  - 6% more signal than with mip;
     can be taken into account in data analysis
     → OK
- Diamond detector → OK
- RICH detector → OK
- GEM detector → OK

What is the uncertainty on the beam momentum?