CBM detector and electronics tests at COSY in 2017

Johann M. Heuser

GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany

for the CBM Collaboration

5th COSY Beamtime Advisory Committee Meeting, Bad Honnef, 19 December 2016

Outline

- 1) Results from in-beam tests, August 2016
- 2) Application for beamtime in 2017:
 - I. Electronics tests: Feb. 2017 (1 week)
 - II. Detector tests: May 2017 (2 weeks)

1) Results from the in-beam test, August 2016

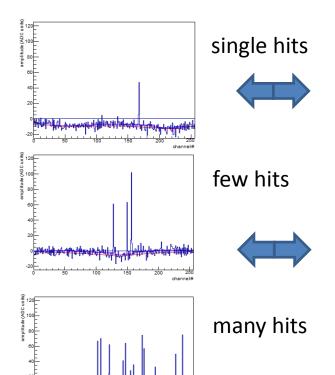
I. Microstrip sensor studies for CBM-STS

Prototype silicon microstrip sensors:

- non-irradiated ("non-aged")
- operated under anticipated conditions:
 bias voltages > 120 V, T ≤ -5 °C
- read out with standalone front-end ASIC and DAQ:
 Beetle chip/Alibava system
- simple trigger: two scintillators in coincidence

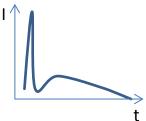
Proton beam from COSY:

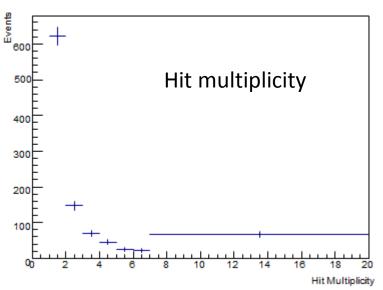
- Ekin = 1 GeV \pm 0.01% in August 2016
- \cong 5% higher energy loss in Si than MIP
 - → taken into account in data analysis


Enabled us to measure:

- charge collection
- signal dependence on beam incidence angle
- cross talk etc.

STS results on charge collection


three event classes, probably related to beam spill structure:



beam intensity time structure:

• sharp spike: 7×10^7 • bulk extraction: 2×10^8

• spill/inter-spill: 20 s/10 s

ca. 50% of the events recorded are "analyzable" (i.e. of low hit multiplicity)

Aibava setup based on the Beetle chip:

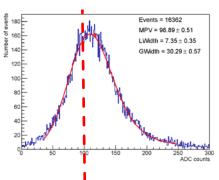
- 2 × 128 r/o channels
- 40 MHz analog rate
- 128 per chip analog memory stack
- 4 μs digitization rate

data storage rate via USB to PC: ≈ 1 kHz

connection schemes:

strip: r/o channel

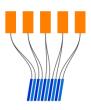
 $\Phi = 0$ ° all cluster sizes


Events = 10611

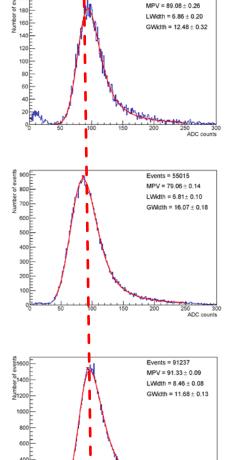
 Φ = 25 $^{\circ}$

all cluster sizes

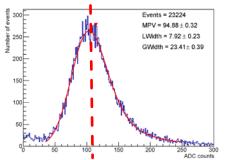
Three connection schemes between sensor strips and **ASIC** channels


Charge collection study:

- Beam incidence angle $0^{\circ} \le \Phi \le 25^{\circ}$ (inclination corresponds to STS acceptance
- Detailed charge collection study made



every second strip read out

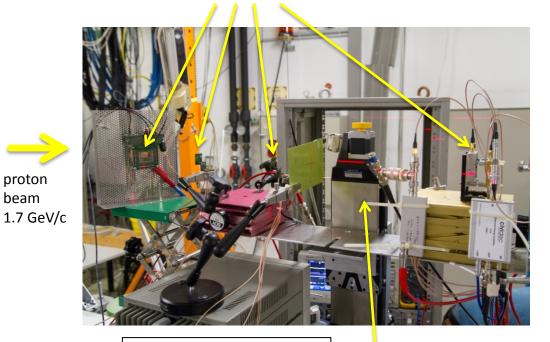


2:1

LWidth = 8.19 ± 0.29 GWidth = 31.89 ± 0.49

 $MPV = 84.16 \pm 0.41$

Findings:


- Size of clusters increases with beam incidence angle as expected by geometry
- For large clusters the noise increases (larger capacitive effect, as expected)
- Spectra broaden with increasing angle

II. Diamond detector studies for TOF-TO

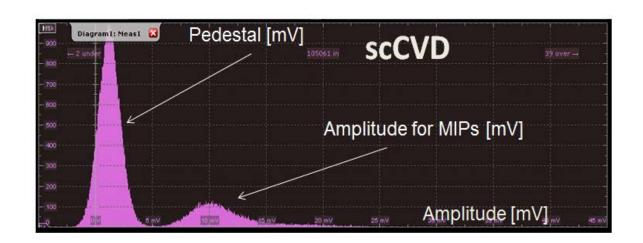
Main aim: Response of poly-crystalline CVD diamonds to MIPs

- Detection efficiency for MIPs in pcCVD diamond material
- Timing properties of pcCVD diamond material

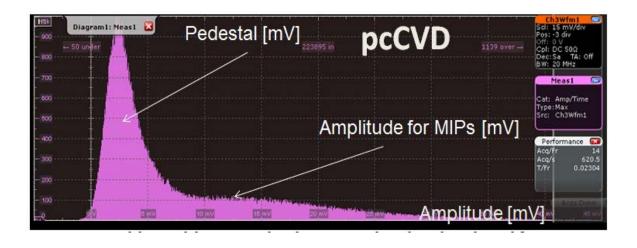
Diamond detectors (aligned via laser)

Remote Oscilloscope as flexible read-out and DAQ Movable platform (X/Y) with µm precision

poly-crystalline (pcCVD)


> single-crystalline (scCVD)

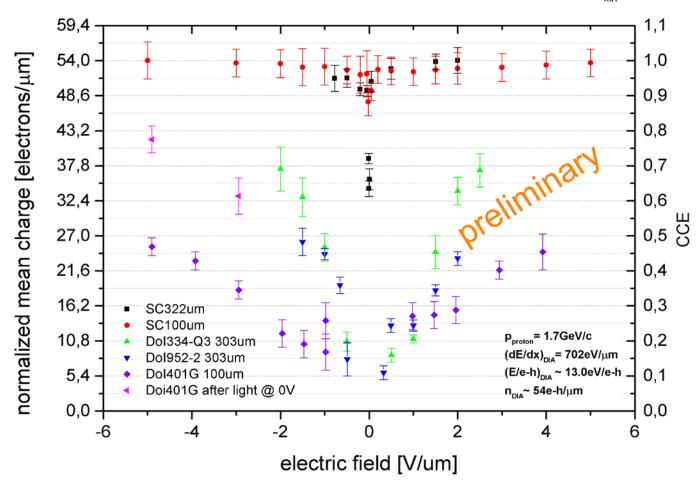
> > quasisinglecrystalline (Diamond on Iridium, DoI)


proton

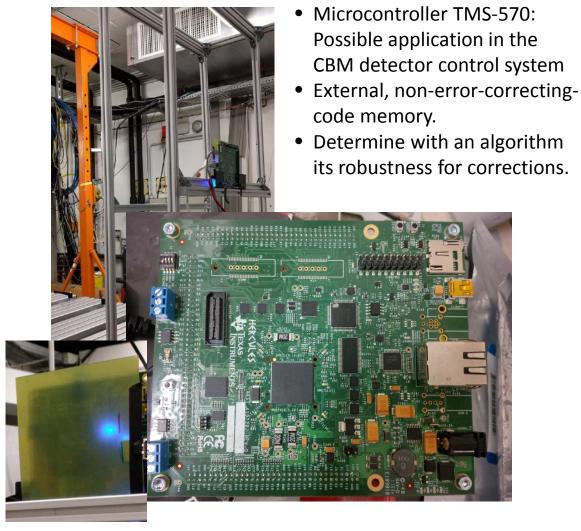
beam

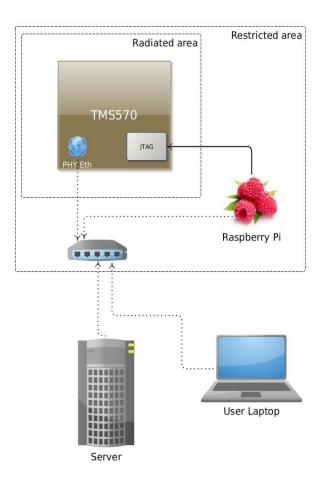
Results: scCVD/pcCVD amplitude spectra

clear separation between signal and pedestal for scCVD



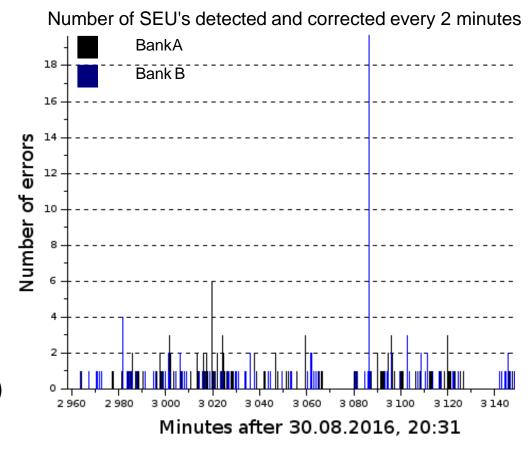
problem with separation of signal and pedestal for pcCVD


→ further tests at higher bias voltage needed!

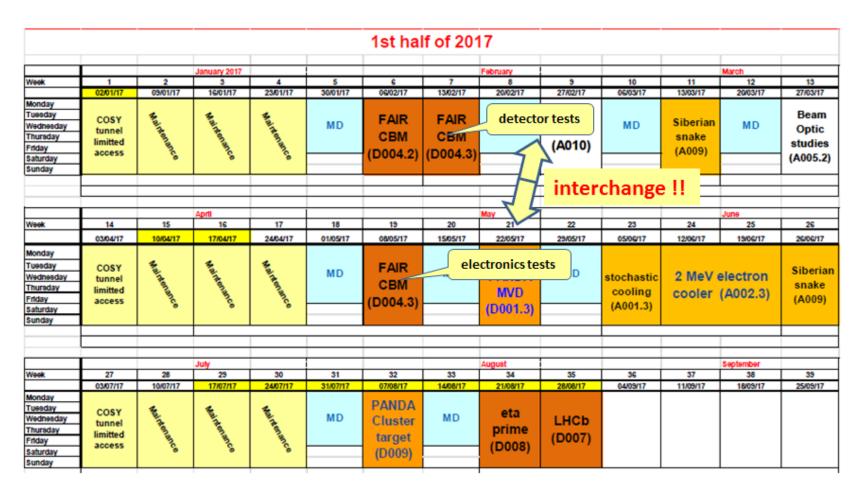

Results: Dol charge collection

calculated mean value of collected charge per micron in proton beam (E_{kin}=1.0GeV)

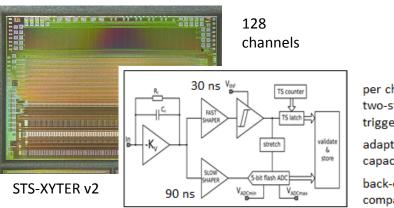
III. Micro Controller rad-tolerance study

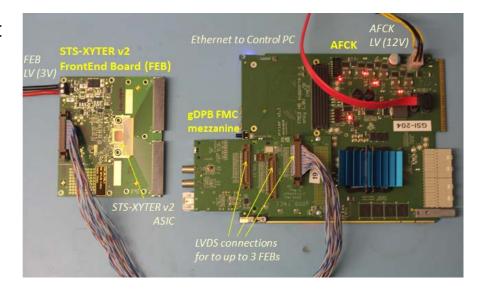


- EPICS monitors failure registers
- mysql data base, every 2 seconds


Microcontroller SEU results

- Total BeamTime: ~13 h
- No failures detected during beam-off times
- Single bit errors detected when beam was on
- No Multiple-bit errors
- Total detected and corrected SEUs:
 - in SRAM Bank A:718
 - in SRAM Bank B: 686
- Dosimetry foil evaluation pending (offered by O. Felden et al., FZJ-IKP)


2) Application for beamtime in 2017


draft, July 2016 - to be endorsed in CBAC#5, 19-20 December 2016

I. Tests of electronics

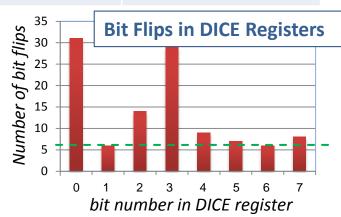
- STS-XYTER v2 ASIC (front-end chip for CBM-STS and MUCH detector systems) produced in September 2016.
 Detailed tests ongoing, running set-ups in the laboratory. Ready for beam test!
- Aim of in-beam test:
 Qualification of the improved DICE cell
 architecture with respect to Single Event
 Effects (SEE) in the STS-XYTER v2 ASIC
 - Comparison with the cross section determined in the STS-XYTER v1 test, 9/2015 at COSY, using a similar setup.
 - Requirement:
 1 week of highest possible beam intensities in JESSICA Cave to yield sufficient statistics of SEUs

per channel: two-stage internal trigger adapted to high capacitive load back-end GBT compatible

SEE results 9/2015 and expectation for 2017

Procedure:

- comparison of 2-dimensional array (channels, discriminators) of registers implemented with **DICE cells** and regular **flip flops**
- continuous **readback** of predefined pattern or constant random values
- check for bit flips in register values

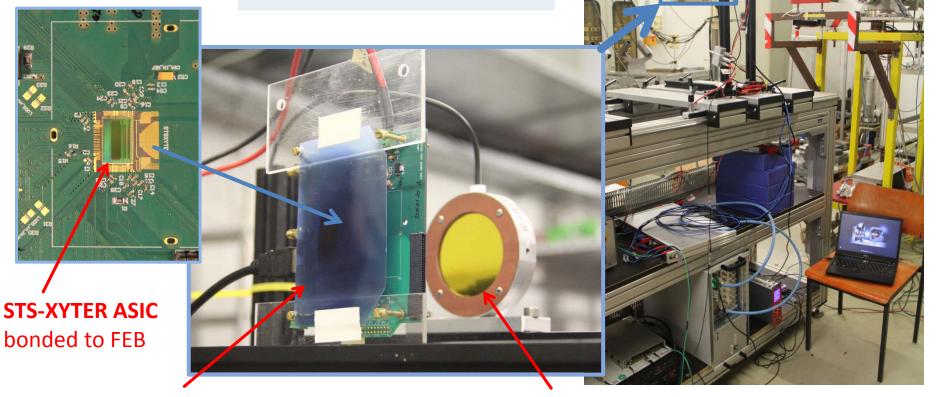

SEE Counts

~ 48 hours of effective irradiation (Sep. 2015 conditions)

	STS->	(YTER v1 (Sep. 2015)	STS-XYTER v2 (estimate)	
		Total number		Total number
Туре	No. of bits	of SEE	No. of bits	of SEE
Flip Flop	32240	3467	56420	6067
DICE cells	32240	116	32240	<48

Expectations for STS-XYTER v2 tests

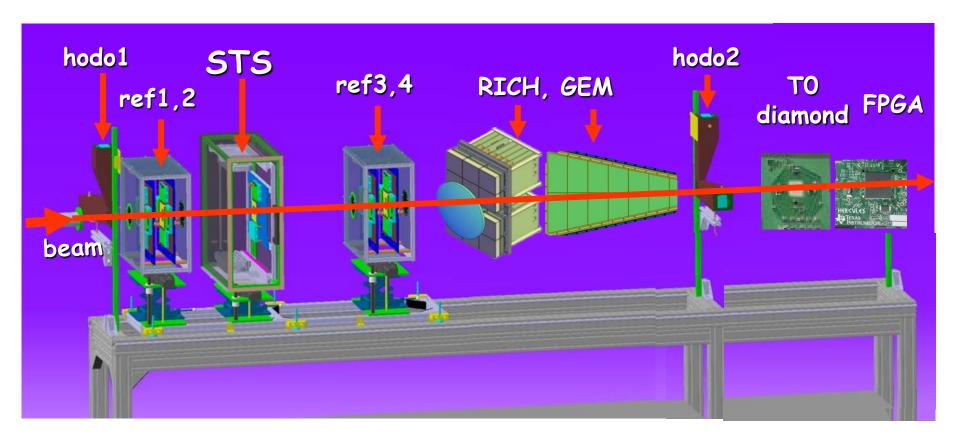
- better SEE statistics for regular flip flops
 - number increased by factor 1.75
- SEE in DICE cells reduced by factor larger than 2
 - improved cell layout (all DICE register bits)



Setup will be similar to the one used in Fall 2015

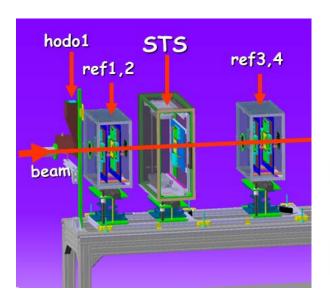
FZ Jülich, COSY, JESSICA cave

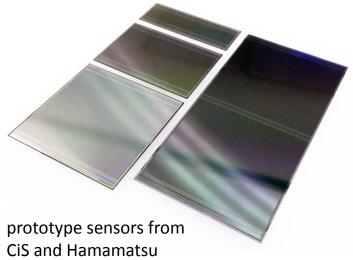
~3×10⁹ p/spill on setup


FEB with STS-XYTER v1

Ionization Chamber with QFW based readout

Beamtime application for electronics test

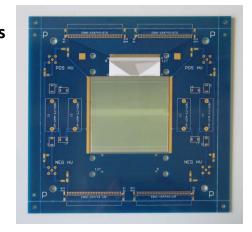

Total number of particles and type of beam (p,d,polarization)	Momentum range (MeV/c)	Intensity or internal reaction rate (particles per second)	
(1-771		minimum needed	maximum useful
p, not polarized	p ~ 1700 MeV/c	10 ⁸ /s	10 ⁹ /s
Experimental area	Safety aspects (if any)	Earliest date of Installation	Total beam time (No.of shifts)
JESSICA Cave	none	week 6, 2/2017 focus: STS XYTER v2 SEU tests optional: FPGA SEU tests, power regulator TID tests	one week, 24/7


II. Tests of detectors

- 3 large set-ups (STS, RICH, GEM)
- + two smaller ones (T0, FPGA)
- new FEE and DAQ (n-XYTER ASIC based, AFCK-FLIB/FLES)

(a) Tracking efficiency test of STS sensors

- Aim: Sensor efficiency study with reference tracks. Important to PRR in 2017.
- Sensors irradiated up to CBM life-time fluence (10¹⁴ n/cm²) at KIT.
- Operation at below -5 °C
 New thermal box under preparation.

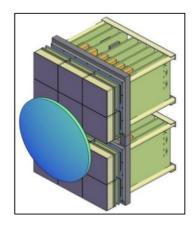

sensor boards

reference stations under construction based on n-XYTER FEBs

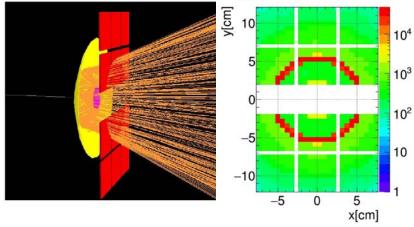
(electronics/DAQ available to STS from Jan. 2017)

(b) Test of readout electronics for RICH-MAPMTs

- Measure first Cherenkov photons with new DIRICH scheme; study rate behavior
- First steps towards integration of DiRICH chain into CBM DAQ system



Combiner


Power module

Electronics: ready

- radiator lens with Aluminum coating
- 2x 3x2 PMT matrix
- HADES RICH700 modules

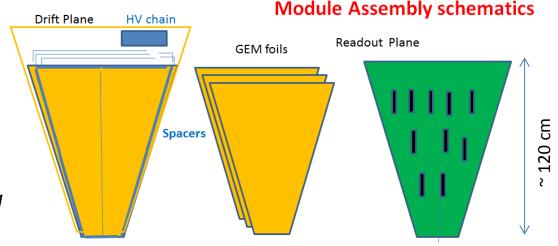
Simulation of ring image on PMT plane at COSY:

beam: p = 1.7 GeV/c, 10^5 protons/s, $\sigma_{x,y}$ = 0.3 cm

- up to 4·10⁴ hits/pixel/s
- ~ 20 hits/ring, ring radius: 5.4 cm

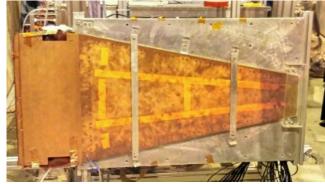
Set-up under construction

(c) Test of new GEM detectors for MuCH

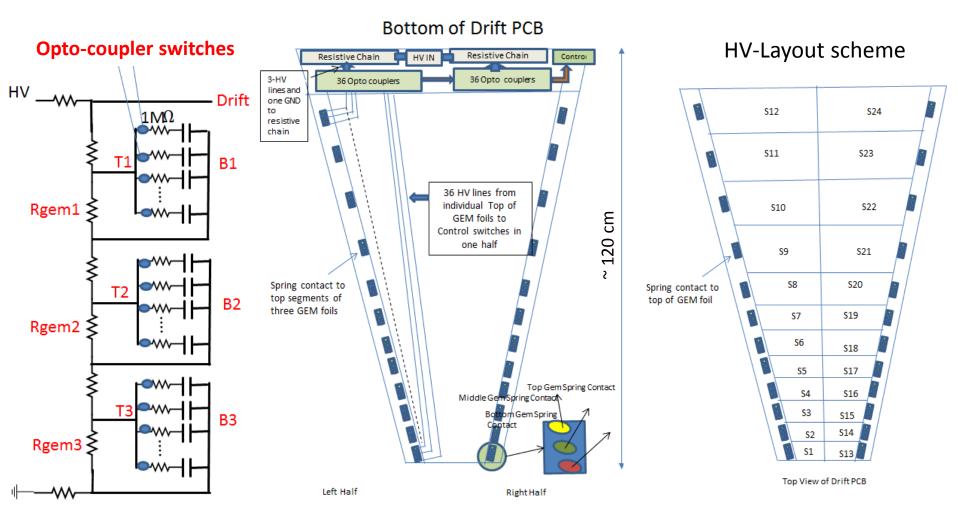

Two prototypes will be tested:

1) Full-size prototype "M2"

- CERN-made GEM foils
- with new HV configuration, possibly involving opto-coupler switches
- with full-fledged controlled cooling
- with full 18 FEB –F read-out
- and latest DAQ

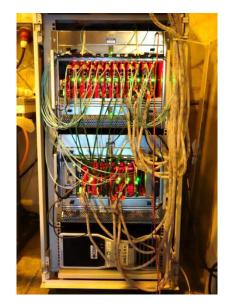

2) Triple-GEM test detector

- Indian-made GEM foils
- 10 cm x 10 cm and/or
- 30 cm x 30 cm

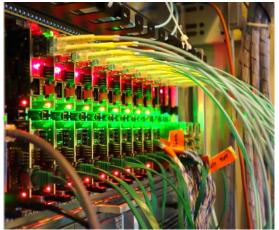


Prototype M1 under test at CERN-SPS, 12/2016

GEM – prototype M2 under construction



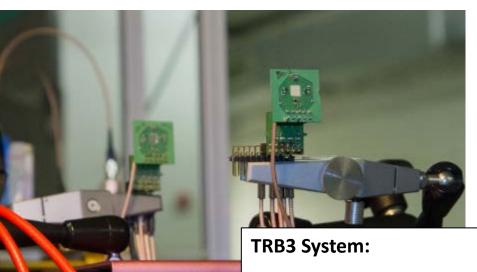
biasing network laid out for high stability under pulsed current

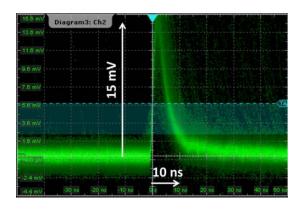

(d) New DAQ system for STS + GEM read-out

Ready: DAQ running at CBM Pb-beamtime (TOF, TRD, GEM), CERN-SPS, 12/2016. Will be used for STS, Hodoscope + GEM read-out at COSY.

on/near detector **mFLES** on detector *in* μTCA crates PCs with FLIBs for nDPB/MUCH time-slice building *aDPB* from the incoming **tDPB** data stream **nDPB**

n-XYTER FEBs





μTCA crates

mFLES

(e) Diamond T0 tests with TRB3 read-out

- FPGA-based high precision TDC measurement and DAQ in one
- Leading edge precision: 8-12ps (RMS)
- Very flexible trigger functionality (FPGA)
- Hitrates < 50 MHz (burst)

Used in many FAIR Projects:

- HADES (diamond/trigger/RICH/ECAL),
- CBM RICH,
- PANDA (Barrel-DIRC/Straw)
- and also outside of FAIR: MUSE, A1, ...

Beamtime application for detector tests

Total number of particles and type of beam (p,d,polarization)	Momentum range (MeV/c)	Intensity or internal reaction rate (particles per second)	
(p,a,polarization)		minimum needed	maximum useful
p, not polarized	p ~ 1700 MeV/c	10 ⁴ /s	10 ⁶ /s
Experimental area	Safety aspects (if any)	Earliest date of Installation	Total beam time (No.of shifts)
two "control rooms" for the large detector groups (GSI, Univ. Frankfurt, TU Darmstadt, Univ. Giessen Univ. Wuppertal, VECC Koktata): room at Big Karl, and Wasaquarium	none	<pre>* STS with DCS, DAQ, Online Analysis; * GEM prototypes; * RICH + DAQ; * diamond T0 detector.</pre>	two weeks, 24/7

The two CBM beamtimes summarized

Total number of particles and type of beam (p,d,polarization)	Momentum range (MeV/c)	Intensity or internal reaction rate (particles per second)	
,		minimum needed	maximum useful
p, not polarized	p ~ 1700 MeV/c	10 ⁴ /s	10 ⁶ /s (detectors) 10 ⁹ /s (electronics)
Experimental area	Safety aspects (if any)	Earliest date of Installation	Total beam time (No.of shifts)
JESSICA Cave	none	week 6, 2/2017 focus: STS XYTER v2 SEU tests optional: FPGA SEU tests, power regulator TID tests	one week, 24/7
Big Karl Cave + two "control rooms" for the detector groups: room at Big Karl, and Wasaquarium	none	* STS with DCS, DAQ, Online Analysis; * GEM prototypes; * RICH + DAQ; * diamond T0 detector	two weeks, 24/7

Appendix

SEE Tests

- Goal: first qualification of STS-XYTER DICE cell architecture with respect to Single Event Effects (SEE):
 - quantitative assessment of SEE cross sections for DICE cells and comparison to the regular flip flops in the design
 - dependency of SEE cross sections on incident angle
- Expected SEE cross sections in the order of 10⁻¹³ to 10⁻¹⁴ cm²/bit for regular flip-flops and 10⁻¹⁴ to 10⁻¹⁵ cm²/bit for DICE cells
 - DICE cross section may be significantly increased in case of inadequate cell architecture
 - Depending on DICE architecture inclined incidence may increase cross section
- Tests
 - Count SEEs (readback of STS-XYTER registers)
 - Measure at perpendicular incidence: 90 (compatible with literature values)
 - Measure at inclined incidence: >≈ 25°
 typical incidence angle for ASIC installation in CBM-STS

SEE Rate Estimate for STS-XYTER v2

Compare

- DICE cells: 32240 bits (Trim DACs settings) same number as with STS-XYTER v1
 → test with any predefined bit pattern
- Regular flip flops: 56420 bits (ADC discriminator counters → 14bit instead of 8bit in STS-XYTER v1)
 - → test with random bit pattern
- 1 week in JESSICA cave: compared to Sep. 2015
 - More DUTs
 - 2 ASICs with perpendicular incidence (approx. compensates for lower expected SEE rate for DICE cells)
 - 1 ASIC with ~25 degree incidence as in CBM-STS
 - Check for variations in SEE rate depending on incidence angle
 - Longer effective duration of irradiation (more robust and recoverable readout interface)
 - Higher beam intensity