CBM detector and electronics tests at COSY in 2017 and Q1/2018

Johann M. Heuser

GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany

for the CBM Collaboration

6th COSY Beamtime Advisory Committee Meeting, IKP FZ Jülich, 26 June 2017

Outline

- 1) Results from in-beam test, February 2017
- 2) Request for re-scheduled beamtime, May 2017
 - *I.* October 2017 (1 week)
- 3) Application for beamtime in Q1/2018:
 - I. Electronics tests: Feb. 2018 (1 week)
 - II. Detector tests: Feb./March 2018 (1 week)

(1) Results from in-beam test, February 2017

J. Heuser - CBM detector & electronics tests at COSY

SEU Test Setup@COSY Feb.2017

Two different architectures:

- → DICE cells: 31744 bits (ADC trim DACs) → Flip-flops: 47616 bits (ADC disc counters)
- \rightarrow 3 ASICs under test.

Beam features:

- \rightarrow 1.6 Gev/c momentum (Info from AT).
- \rightarrow 18 s duty cycle.
- \rightarrow 4 5 s spill length.
- \rightarrow Average intensity per spill > 4 x 10⁹ p
- \rightarrow Effective irradiation time: ~ 45 hours.
- → Integral intensity: ~ 3.7 x 10^{13} p.

Beam monitoring:

- \rightarrow Ionization chamber (IC) for beam intensity.
- ightarrow Gafchromic films for beam position and beam profile.

Results (I)

SEU in DICE cells (8 bits).

Findings:	: \rightarrow Improvement in the radiation hardness of the DICE cells architectur			
	relative to the STS-XYTERv1 as expected.			
	\rightarrow Hint for further enhancement (cells 4 to 7)			

Results (II)

Two unexpected scenarios of malfunction observed during operation in test beam:

1) Potential latch-up in AFE (analog front end) control path

- Symptoms
 - Errors in read-back from registers in the AFE: counters, configuration registers
 - correlated with higher supply current (0.6 A \rightarrow 0.8 A)
 - startup procedure (sync, reset, configure) does not cure
 - power cycle recovers from condition
- 4 occurrences during normal operation
- No effect seen in registers of digital backend
- \rightarrow probably latch-up in row/column decoders of AFE registers
- \rightarrow Possible means to fix: more contacts to bulk & wells and add guard rings.

2) Randomly toggling bits in test counters

- some counter bits do not retain stable values: some bits toggle randomly
 - Symptom: inconsistent or erroneous read-back
- appeared at the same time in all 3 ASICs in beam during beam optimization at higher rates (> 8 × 10⁹ p/spill)
- Permanent effect
- counters are not rad-hard \rightarrow only used for monitoring in test phase, not critical
- Problem does not affect configuration registers
 - Possible remedy: applying similar changes as applied to the DICE registers may also solve counter problems:
 better T-well & n-well contacts by guard rings

further investigations planned in February 2018

(2) Request for re-scheduled beamtime 2017

- In May 2017 we had the following tests scheduled (2 weeks):
 - Test of readout electronics for RICH-MAPMTs (DiRICH)
 - Diamond T0 tests with TRB3 read-out
 - Test of STS sensors (track reconstruction efficiency $* \rightarrow$ charge collection)
 - Test of new GEM detectors for MuCH*
 - Test of new DAQ chain* (n-XYTERv2 ASICs, front-end boards type F, AFCK read-out boards, prototype interface boards FLIB to FLES)
 - * cancelled due to dying/noise problem in n-XYTER front-end boards
- We would like to carry out part of the tests in *October 2017*:
 - DiRich read-out study
 - Diamond T0 test / HADES MDC
 - power regulators TID effects
 - Configuration Scrubbing via GBT-SCA chain

1 week of beamtime, 2nd half of October (weeks 42+)** in JESSICA or BIG KARL cave

** due to CBM, HADES Collab. Meetings

Test of readout electronics for RICH-MAPMTs

Goals for COSY test beam:

First full system test with complete front end electronics: *12 MAPMTs, 2 backplanes, 24 DiRICH, 2 DiRICH-Combiner*

- Check stability and functionality of new readout chain
- Determine single photon detection efficiency with new DiRICH readout
- Test readout chain under realistic high rate conditions
- Test performance of new WLS coating

Status:

Second iteration of DiRICH front-end module 30x DiRICH2 produced, ready for testing (2 full backplanes, 12 MAPMTs)

COSY prototype testbox ready for beam:

- Solid glass lense Cherenkov radiator
- with 2 modules: 12 MAPMTs, 24 DiRICH

Promising first tests at GSI with light pulser in preparation of COSY beamtime:

COSY Cherenkov prototype detector with lense radiator (right compartment), and 1 or 2 fully equipped readout modules (left compartment)

first DiRICH "ring" with light pulser + shadow mask at GSI

DiRICH read-out modules

full backplane for 6 MAPMTs, 12 DiRICH + Combiner + Power module

single DiRICH front-end module, 32 ch

DiRICH-Power module for LV and HV supply

DiRICH-Combiner module

Diamond T0 tests with Scope/TRB3 read-out

TRB3 System:

- FPGA-based high precision TDC measurement and DAQ in one
- Leading edge precision: 8-12ps (RMS)
- Very flexible trigger functionality (FPGA)
- Hit rates < 50 MHz (burst)

Used in many FAIR Projects:

- HADES (diamond/trigger/RICH/ECAL),
- CBM RICH,
- PANDA (Barrel-DIRC/Straw)
- and also outside of FAIR: MUSE, A1, ...

MDC & Diamond setup

Goals:

- Study drift velocity map inside drift cell, gas mixture dependency
- Compare precision of old & future HADES analog ASICs
- Measure spatial resolution of full system: MDC + analog + digital electronics with standalone DAQ

Setup:

- Mini Drift Chamber (MDC)
 - 50x20 cm² active area
 - 2 drift cell layers,
 - each 40 cells (5x5 mm²)
- reference / tracking by Diamond (scCVD) detector:
 - 4 channels, 100µm gap
 - time precision < 100 ps
 - movable (µm step precision)

drift time map inside a single drift cell (measured by laser ionization @ HZDR)

CBAC Meeting #6, 26.06.2017

SCCYD

J. Heuser - CBM detector & electronics tests at COSY

11

(3) Application for beamtime in Q1/2018

(a) One week of electronics tests in high-intensity proton beam (February 2018)

- STS-XYTER v2 ASIC: near-final chip before its mass production; carry out more detailed investigations of open questions:
 - verify single-event for register cells of different architectures
 - verify unexpected latch-up events observed previously
 - verify potentially dose-rate dependent failures at highest COSY intensities (> 7 × 10⁹ protons/spill of 5 seconds)
- Test new custom-designed LDOs for effects of total ionizing dose and fast transients.
- Test robustness of new Fault Tolerant Local Monitoring and Control (FTLMC) board against SEU radiation effects
- Different FPGA electronics will be tested for single-event upsets and the effectiveness of data correction methods.

(3) Application for beamtime in Q1/2018

(b) One week of detector tests in mid-intensity, widened proton beam (February or early March 2018)

- Test of prototype STS modules read out with the STS-XYTER v2 ASIC
 - The module will employ the final prototype sensors and microcables bonded to STS-XYTER v2 ASICs mounted on a technical prototype of the front-end electronics board.
 - Several modules shall be tested for their detection performance in a particle beam covering a good fraction of the silicon sensors. Beam widened to the pipe diameter in the Big Karl cave (about 6 cm diameter) is well suited to such test.
- T0 Diamond detector test

Prototype STS module read out with the STS-XYTER v2 ASIC

STS-XYTERv2 test board connected to a silicon microstrip sensor

prototype module with STS-XYTERv2 read-out under preparation

Prototype STS module read out with the STS-XYTER v2 ASIC

CBM request October 2017 summarized

Total number of particles and type of beam (p,d,polarization)	Momentum range (MeV/c)	Intensity or internal reaction rate (particles per second)	
		minimum needed	maximum useful
р	p ~ 2700 p ~ 400	~ 104	up to 10 ⁶
Experimental area	Safety aspects (if any)	Earliest date of installation	Total beam time (No.of shifts)
JESSICA or Big Karl Cave	None	October 2017	7 days around the clock
		Detector tests:	
		DiRICH readout, T0	(installation of equipment <u>in advance</u> of the beamtime week advantageous)

CBM application Q1/2018 summarized

Total number of particles and type of beam (p.d.polarization)	Momentum range (MeV/c)	Intensity or internal reaction rate (particles per second)	
		minimum needed	maximum useful
р	p ~ 2700	~ 10 ⁴ – 10 ⁶ (detector tests)	up to 10 ⁹ (electronics tests)
Experimental area	Safety aspects (if any)	Earliest date of installation	Total beam time (No.of shifts)
JESSICA or Big Karl Cave	None	February 2018	7 days around the clock
		<u>electronics tests:</u> front-end ASIC STS- XYTERv2, power regulators,control boards, FPGA	(installation of equipment <u>during</u> the beamtime week is sufficient)
Experimental area	Safety aspects (if any)	Earliest date of installation	Total beam time (No.of shifts)
Big Karl Cave	None	February/early March 2018	7 days around the clock
		detector tests: prototype STS module with STS-XYTERv2 read-out , T0	(installation of equipment <u>during</u> the beamtime week is sufficient)