
Version approved during the meeting of Standing Committee of Deans held during 29-30 Nov 2013

Development of FPGA based Error Resilient Self-

Triggered Readout Chain for Muon Chamber (MUCH)

Detector of CBM Experiment

By

Swagata Mandal

ENGG04201304002

Variable Energy Cyclotron Center

A thesis submitted to the

Board of Studies in Engineering Sciences

In partial fulfillment of requirements

for the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

October, 2017

Version approved during the meeting of Standing Committee of Deans held during 29-30 Nov 2013

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an

advanced degree at Homi Bhabha National Institute (HBNI) and is deposited in the

Library to be made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission,

provided that accurate acknowledgement of source is made. Requests for permission

for extended quotation from or reproduction of this manuscript in whole or in part

may be granted by the Competent Authority of HBNI when in his or her judgment the

proposed use of the material is in the interests of scholarship. In all other instances,

however, permission must be obtained from the author.

 Swagata Mandal

Version approved during the meeting of Standing Committee of Deans held during 29-30 Nov 2013

DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out by

me. The work is original and has not been submitted earlier as a whole or in part for a

degree / diploma at this or any other Institution / University.

 Swagata Mandal

Version approved during the meeting of Standing Committee of Deans held during 29-30 Nov 2013

List of Publications arising from the thesis

Journal
1. Swagata Mandal, Rourab Paul, Suman Sau, Amlan Chakrabarti,

Subhasis Chattopadhyay “A novel method for soft error mitigation in

FPGA using Modified Matrix code” IEEE Embedded system letter, vol:8,

pp: 65-68, issue: 8, August 2016 (DOI:10.1109/LES.2016.2603918)

2. Swagata Mandal, RourabPaul, SumanSau, AmlanChakrabarti,

SubhasisChattopadhyay “Efficient dynamic priority based soft error

mitigation techniques for configuration memory of FPGA hardware”

Microprocessor and Microsystem, vol: 51, 2016.

(https://doi.org/10.1016/j.micpro.2016.12.003)

3. Swagata Mandal, Jogender Saini, Wojciech M. Zabołotny, Suman

Sau, Amlan Chakrabarti, Subhasis Chattopadhyay” An FPGA-Based

High-Speed Error Resilient Data Aggregation and Control for High

Energy Physics Experiment”, IEEE Transaction on Nuclear Science, Vol:

64, Issue:3, 2017, DOI: 10.1109/TNS.2017.2656464.

4. Jogender saini, Swagata Mandal, Amlan Chakrabarti and Subhasis

Chattopadhyay, “A real time sorting algorithm to time sort any

deterministic time disordered data streams”, Journal of Instrumentation

(JINST), IOP Science, Vol:12, 2017

Conferences

1. Swagata Mandal, Suman Sau, Amlan Chakrabarti, Jogendra Saini,

Sushanta Kumar Pal, Subhasish Chattopadhyay “FPGA based

Novel High Speed DAQ System Design with Error Correction”, In

Proceedings of IEEE Computer Society Annual Symposium on

VLSI (ISVLSI), 2015, Montpellier, France.

2. Swagata Mandal, Suman Sau, Amlan Chakrabarti, Susanta Kumar

Pal, Subhasish Chattopadhyay,” FPGA Implementation of High

Speed Latency Optimized Optilal Communication System Based

on Orthogonal Concatenated Code”, In Proceedings of 24th Asian

Test Symposium (ATS), 2015, IIT Bombay, India.

3. Swagata Mandal, Jogender Saini, Suman Sau, Amlan Chakrabarti,

Wojciech Zabolotny, Subhasis Chattopadhyay, W. F. J. Muller,"

Integration of GBTx Emulator with XYTER and Data Procissing

https://doi.org/10.1016/j.micpro.2016.12.003

Version approved during the meeting of Standing Committee of Deans held during 29-30 Nov 2013

Board (DPB) for CBM Experiment", In proceedings of IEEE

Nuclear Science Symposium, 2016, Strasbourgh, France.

4. Swagata Mandal, Wojciech Zabolotny, Suman Sau, Amlan

Chakrabarti, Jogender Saini, Subhasis Chattopadhyay, Sushanta

Kumar Pal, " Internal monitoring of GBTx emulator using IPbus

for CBM Experiment”, In Proceedings of XXXVI-th IEEE- SPIE

Joint Symposium Wilga2015, Poland.

5. Suman Sau, Swagata Mandal, Jogender Saini, Amlan Chakrabarti,

Subhasis Chattopadhyay ," High Speed Fault Tolerant Secure

Communication for MUCH using FPGA based GBTx Emulator",

In Proceedings of 21
st
 International Conference on Computing in

High Energy and Nuclear Physics (CHEP 2015)' April 13-17 ,2015.

6. Swagata Mandal et.al," FPGA Emulator of GBTx for Muon

Chamber (MUCH) in CBM Experiment", In Proceedings ofDAE

Symposium on Nuclear Physics (snp2014), December 08-12, 2014.

Vanarasi. Benaras Hindu University'

7. Swagata Mandal et.al," Electronic Data Aggregation Architecture

for High Energy Physlcs Big data taking Experiments", In

Proceedings of DAE- BRNS Symposium on Nuclear Physics

(snp2016)

 Swagata Mandal

Version approved during the meeting of Standing Committee of Deans held during 29-30 Nov 2013

DEDICATIONS

I would like to dedicate this thesis to my loving parents, colleagues and friends ...

Version approved during the meeting of Standing Committee of Deans held during 29-30 Nov 2013

ACKNOWLEDGEMENTS

I have been dedicated during the course of my research work and tried to give an

honest effort. However, it would not have been possible without the kind support and

help of many individuals and organizations. I would like to extend my sincere thanks

to all of them. I am highly indebted to my supervisors Prof. Subhasis Chattopadhyay,

Prof. Amlan Chakrabarti, Prof. Tapan Kumar Nayak and Shri. Singaraju Ramanarayan

for their guidance and continuous support as well as for providing necessary

information regarding the project \& also for their imperial hand holding in

completing the project. I would like to express my gratitude towards my mother Smt.

Mita Mandal, my father Shri Swapan Mandal. Their cooperation and encouragement

help me to complete this project successfully. I would like to express my special

gratitude and thanks to all the faculty members of VECC and my lab colleagues S/Shri

Jubin Mitra, Jogender Saini, Partha Bhaskar, Shuaib Ahmad Khan and Vinod Singh

Negi for giving me such attention and time.

Abstract

The Compressed Baryonic Matter (CBM) experiment is one of the most important experiments at the

future Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany which is designed to

detect rare particles generated during high energy and high density nucleus-nucleus collisions. Gas

electron multiplier (GEM) detectors based Muon Chambers (MUCH) are used to detect muons

generated during the collisions in the CBM experiment. This thesis mainly focuses on the

development of Field programmable Gate Array (FPGA) based self-triggered error resilient readout

chain to capture MUCH detector output that will be used during the data analysis and online

computing. FPGA is used as the target device due to some of its advantages like on field

programmability, inherent parallelism, runtime partial reconfigurability and easy time to market

compared to application specific integrated circuits (ASICs). Front end electronics board (FEBs) in

readout chain capture data directly from the detector and send it to the computing nodes using Gigabit

Transceiver (GBTx) board, data processing boards (DPB) and First level interface board (FLIB)

though different high speed interconnects like optical fibre and peripheral component interconnect

express (PCIe). As a part of the readout chain we have developed an FPGA prototype of a high speed

error resilient communication proto col termed as GBTx Protocol, which is used to transfer data from

harsh radiation zone to moderate radiation zone. Though, the ASIC version of the GBTx

hardware has already been developed at CERN, our work is a first of its kind FPGA implementation

of the same. Proper steps have been taken to make the high speed communication robust in the

radiation with stabilized latency using orthogonal concatenated code and delay and phase alignment

circuit. As the FEBs work in the self-triggered mode and there i s no trigger information in the data

stream we have developed an online memory management algorithm to remove the deterministic time

disorder in the online data stream that helps further data analysis in the computing no des. In the first

phase of our research we have developed an FPGA prototype of the readout chain comprising of

FEBs, GBTx emulator, DPB and the related integration. FPGA devices are vulnerable to charge

particles and they may cause soft errors in the configuration memory. In order to mitigate single and

multi-bit upsets due to soft errors in the configuration memory of FPGA a novel parity based error

correcting code (ECC) named as modified matrix code (MMC) and an erasure code known as

EVENODD code have been used. Using frame interleaving and selective bit placement along with

Hamming pro duct co de (HPC) a multi-bit adjacent ECC is proposed that enhances error correcting

capability of HPC without increasing redundancy. At the same time we have proposed dynamic

partial re configuration (DPR) along with a simple hardware scheduling algorithm based download

manager that helps to perform the error correction in the configuration memory without suspending

the operations of other hardware blocks. In general, flash memory is used to store data bits for future

usage and now a day to cope up with the huge data volume designers have started to use multi-level

memory cells where one memory cell can store multiple data bits instead of single bit. With the

increase of memory density probability of adjacent bits being affected by radiation increases and

it leads to the formation of clustered error. As traditional multi-bit ECCs are inefficient against

clustered error we have proposed a novel clustered ECC using shortened product codes with simple

linear block code as component codes. In a nutshell, this dissertation contributes to the state of the art

research in the domain of soft error mitigation of embedded systems under radiation environment

through the various new methodologies and their system level implementations that have been

achieved in the due course of this research.

Contents

Contents i

Synopsis iii

List of Figures iv

List of Tables x

1 Introduction 1

1.1 Compressed Baryonic Matter Experiment 2

1.1.1 Muon Chamber (MUCH) Detector 4

1.2 Architecture of Data Acquisition System 6

1.2.1 Errors in DAQ system and its mitigation 7

1.2.2 Microprocessor and Micro-controller 9

1.2.3 Application Speci�c Integrated Circuits 10

1.2.4 Field Programmable Gate Array (FPGAs) 10

1.2.5 FPGA Design Flow . 13

1.3 Research Motivation . 15

1.4 Research Objective . 16

1.5 Organization of the Thesis . 17

2 Related Research Work 18

3 Integration of MUCH-XYTER with DPB using FPGA based

GBTx Emulator 32

3.1 Introduction . 33

i

CONTENTS

3.2 FPGA based GBTx Emulator . 35

3.3 Muon Chamber X-Y Time Energy Readout ASIC 47

3.4 Data Processing Board . 53

3.4.1 Communication with time and fast control 57

3.4.2 Communication through slow control interface 58

3.5 Integration of DPB with MUCH-XYTER using GBTx Emulator . 65

3.6 Results and Performance Analysis 69

3.7 Conclusion . 76

4 An FPGA based High Speed Error resilient Data Aggregation

and Control System for Radiation Environment 77

4.1 Introduction . 78

4.2 System Design for High Speed DAQ 80

4.2.1 Optical Interface Board (OIB) 82

4.2.1.1 Frame Aligner and Pattern Search Block 88

4.2.2 Computer Interface Module(CIM) 89

4.2.3 Overview of the data �ow 100

4.3 Latency Optimization . 102

4.4 Error Mitigation in FPGA devices 105

4.5 Results and Performance Analysis 106

4.6 Conclusion . 113

5 Latency optimized clustered error correction for mult-level mem-

ory chips using LSBCPC 114

5.1 Introduction . 115

5.2 MLC NAND FLASH Memory Background 117

5.2.1 Error distribution in MLC Flash 121

5.3 Linear Shortened Block code based Product code 122

5.4 Encoding/Decoding using LSBCPC and its hardware implementa-

tion . 131

5.5 Results and Performance Analysis 136

5.5.1 Cost Analysis . 142

5.6 Conclusion . 145

ii

CONTENTS

6 Soft error mitigation in Con�guration memory of FPGA using

HPC with selective bit placement and Frame Interleaving 146

6.1 Introduction . 147

6.2 Proposed Hamming Product code with frame interleaving and se-

lective bit placement . 148

6.2.1 Selective bit placement strategy 150

6.3 Hardware implementation of HPCFISBP 160

6.4 Result and Performance Analysis 163

6.5 Conclusion . 168

7 E�cient Dynamic Priority Based Soft Error Mitigation Tech-

niques For Con�guration Memory of FPGA Hardware 169

7.1 Introduction . 170

7.2 Proposed Modi�ed Matrix Code Algorithm 173

7.3 Error Detection using Interleaved MMC 180

7.4 Error Detection and correction using EVENODD coding 183

7.4.1 Overview of EVENODD coding 183

7.4.2 Recovery based on EVENODD code 185

7.5 Dynamic Priority Based Algorithm for download manager 192

7.6 Hardware Implementation and its work�ow 195

7.7 Result and Performance Analysis 197

7.7.1 Comparison With existing Error correcting models 198

7.7.2 System Recovery Time . 204

7.8 Conclusion . 206

8 Conclusion and Future Scope 207

References 210

iii

List of Figures

1.1 Fixed Target Experiment vs Collider Experiment 3

1.2 Detector system in CBM experiment [12] 4

1.3 Schematic view of MUCH detector with segmented absorber [13] . 5

1.4 Basic structure of single layer GEM detector 5

1.5 Traditional DAQ network architecture [18] 6

1.6 Planned Building and Cave Infrastructure for CBM Experiment [12] 7

1.7 Performance-�exibility graph among ASIC, FPGA and general

purpose processor . 11

1.8 A Generic FPGA internal Architecture 11

1.9 HDL based design �ow for FPGA based system design 14

2.1 Tree like distributed DAQ architecture 19

2.2 Schematic overview of Atlas experiment in CERN [37] 21

2.3 Basic architecture of ARQ based communication system 25

2.4 Implementation of NAND and NOT logic in an FPGA 28

2.5 SEU causes error in routing logic and NAND gate in an FPGA . . 28

3.1 Schematic diagram of the read out chain for MUCH detector . . . 35

3.2 GBTx ASIC internal architecture and interfaces [104] 36

3.3 Internal modules of a GBT-Bank in GBTx Emulator 38

3.4 Architecture for a systematic RS(15,11) encoder 40

3.5 Di�erent steps of RS decoding algorithm 41

3.6 Functionalities of Gearbox . 42

3.7 Architecture of transceiver of GBTx Emulator 43

3.8 Di�erent frame format for data transmission over optical link [104] 45

iv

LIST OF FIGURES

3.9 Steps of generation of GBT Frame during data transmission . . . 46

3.10 Internal architecture of each channel of MUCH-XYTER 48

3.11 Details architecture of analog front end of MUCH-XYTER 49

3.12 MUCH with segregated absorber and multiple GEM detector . . . 50

3.13 Digital back-end of MUCH-XYTER ASIC [108] 51

3.14 Top view of FEB containing MUCH-XYTER ASIC 51

3.15 DPB Firmware structure . 55

3.16 Top view of AFCK board . 56

3.17 Clock Recovery and jitter cleaning circuit of AFCK 56

3.18 TFC system topology . 58

3.19 Internal architecture of TFC master prototype [116] 59

3.20 Implementation of IPBus protocol using standard OSI model . . 60

3.21 Standard Ethernet Frame Format 60

3.22 Architecture of IPBus controller and its interfacing with registers 62

3.23 Architecture of FPGA based UDP/IP stack 63

3.24 Internal Architecture of ARP block 64

3.25 Packet format generated using IPbus protocol 64

3.26 Interfacing of MUCH-XYTER with DPB using GBTx Emulator . 65

3.27 Internal Architecture of MUCH Interface core 66

3.28 Uplink frame format after 8B/10B encoding 68

3.29 Downlink frame format after 8B/10B encoding [108] 68

3.30 Flowchart for synchronous communication over E-Link 69

3.31 Setup for testing MUCH-XYTER using DPB 70

3.32 (a) Fast shaper output with positive pulse (b) negative pulse . . . 71

3.33 (a) Slow shaper output with positive pulse (b) negative pulse . . . 72

3.34 Variation of output voltage of slow shaper with polarity switch and

feedback capacitance of CSA . 73

3.35 Timing diagram of the transmitter and receiver signals 74

3.36 Study of of BER of GBT link using MATLAB simulation 76

4.1 General DAQ system and its surroundings 79

4.2 Simpli�ed read out chain for multistage data acquisition system . 81

4.3 FPGA based readout chain prototype having single OIB and CIM 82

v

LIST OF FIGURES

4.4 Internal architecture of FPGA based FEB emulator 83

4.5 Interfacing of FEB emulator with optical module in OIB 84

4.6 BER performance of BCH and RS code against random error using

BPSK modulation [124] . 86

4.7 Concatenate code using Hamming and BCH code 86

4.8 Helical Interleaving Process . 87

4.9 Internal architecture of CDR circuit in the Xilinx Transceiver . . 88

4.10 (a)Algorithm for Frame Aligner and Pattern Search (b) Data �ow

diagrams of the Frame Aligner and Pattern Search block 89

4.11 (a) Frame format for write request TLP (b) Frame format for com-

pletion TLP (c) Structure of TLP packet after passing through

physical layer . 91

4.12 Data transfer between PC and CIM through DMA and PCIe . . 92

4.13 Flow chart for data transfer between host PC and CIM through

PCIe and DMA . 93

4.14 Implementation of memory management module with PCIe interface 95

4.15 Data �ow through optical �ber and PCIe 101

4.16 (a)Di�erent clock domains in the transmitter (b) Di�erent clock

domains and bu�er bypass strategy in receiver 103

4.17 Flow diagram for manual phase alignment in the transmitter after

bypassing the phase adjust FIFO 104

4.18 Hardware implementation of the proposed EDAC model 106

4.19 Flow diagram for error mitigation using readback scrubbing . . . 106

4.20 System for testing the proposed DAQ system using KC705 and

external clock generator . 107

4.21 Comparison of BER performance of di�erent coding schemes with

our proposed coding . 107

4.22 Synchronization over Elink between FEBs and OIB 108

4.23 Presence of residual error after error correction with di�erent error

correcting codes and scrubbing with CRC 109

4.24 Comparison of availability of FPGA devices after error correction

using di�erent error correcting schemes and Scrubbing with CRC 110

vi

LIST OF FIGURES

4.25 (a) TxFRameClock and RxFrameClock before latency optimiza-

tion (b) TxFRameClock and RxFrameClock after latency opti-

mization . 111

4.26 Simulation result for memory management module 112

5.1 Number of adjacent erroneous bits for MLC and SLC with di�erent

technology node [138] . 116

5.2 Programming and Erasing a Floating Gate Transistor 118

5.3 Threshold voltage distribution of SLC, MLC with two and three

bits per cell . 119

5.4 Organization of Bank, Block and pages in the MLC �ash memory 120

5.5 (a) Single page programming based MLC (b) Multi-page program-

ming based MLC . 121

5.6 Di�erent cluster and almost cluster patterns 122

5.7 Hardware Implementation of proposed LSBCPC 132

5.8 Timing Diagram for pipelined architecture of matrix multiplication

during syndrome generation . 136

5.9 Error correction coverage of LSBCPC of di�erent sizes (a) for both

adjacent as well as nonadjacent MBUs (b) only for adjacent MBU 137

5.10 Adjacent cell correction coverage for single page programming based

two level �ash memory using LSBCPC having di�erent sizes. . . . 138

5.11 Variation of METF with di�erent memory sizes 141

5.12 Variation of ECCEP for di�erent size of LSBCPC and product

code formed using component code described in [148] 143

5.13 Variation of Cost per chip with di�erent number of errors injected

per memory chip for LSBCPC and product code developed using

block code described in [148] having size 32�32 144

6.1 Frame Interleaving in the con�guration memory of FPGA 149

6.2 Con�guration Frames of an interleaving group arranged into mul-

tiple horizontal and vertical groups 150

6.3 Arrangement of data and parity bit for (12,8) Hamming coded data152

6.4 Arrangement of data and parity bits in a data matrix of size 12�12

before selective bit placement . 154

vii

LIST OF FIGURES

6.5 Arrangement of data and parity bits in a data matrix of size 12�12

after selective bit placement . 157

6.6 Arrangement of data and parity bits in a data matrix of size 13�13

after selective bit placement . 158

6.7 Hardware implementation of HPCFISBP 161

6.8 Hardware implementation work-�ow for HPCFI 162

6.9 Hardware Complexity vs BER for di�erent ECC 164

6.10 (a) Comparison of error correction coverage of HPCFISBP with

HPC proposed by authors in [89] (b) Residual errors in con�gu-

ration memory at di�erent time instance after error correction by

HPC and HPCFISBP . 164

6.11 Variation of error correction coverage and error correction time

with di�erent interleaving depth 165

6.12 Variation of error correction time and error correction capability

with size of data matrix . 168

7.1 Occurrence probability of di�erent MBU and SBU (indicated by

'1' along x-axis) patterns for di�erent Neutron energy 171

7.2 (a) Partitioned of con�guration memory into n number of regions

(b) MBU distribution in 45 nm SRAM based FPGA (Taken from [97]172

7.3 Detection and correction coverage of MMC and MC over 64 bit data174

7.4 Window formation within a con�guration frame 175

7.5 (a)Encoding/Decoding using 7�7 window (b)Di�erent error pat-

terns (c) Error Correction using Multiple Iterations 176

7.6 Working Methodology of the proposed MMC code 176

7.7 Variation of correction coverage of MMC and latency with iteration 177

7.8 Variation of error correcting capability of MMC and latency with

di�erent window sizes . 181

7.9 Detection using Interleaved MMC 183

7.10 Example of EVENODD encoding taking R � 7 184

7.11 Grouping of con�guration frames for decoding using EVENODD

code: (a) when EDAC is done separately(b) when EDAC is done

simultaneously . 187

viii

LIST OF FIGURES

7.12 Timing diagram of Sti . 195

7.13 Hardware implementation of the proposed Models 196

7.14 Work�ow of the proposed error correcting models 197

7.15 Average error correction capability of di�erent error correcting

models when single or small number of adjacent bits are a�ected

by random error . 198

7.16 Comparison of error correction capability between MMC and HPC 200

7.17 Comparison between HPC and MMC due to redundant bits . . . 201

7.18 Average error correction capability of di�erent error correcting

models for clustered error . 201

7.19 Comparison between our proposed EVENODD model and model

proposed in [97]for di�erent size of group 203

7.20 Comparison of fault recovery time with di�erent group sizes for er-

ror detection with EVENODD and single error correcting EVEN-

ODD . 206

ix

List of Tables

1.1 Function of detectors used in CBM Experiment [12] 4

3.1 MUCH-XYTER Analog Front-end Register Description 52

3.2 MUCH-XYTER Digital Back-end Register Description for 192
th
row 54

3.3 Gain of slow and fast shaper for di�erent feedback capacitance of

CSA . 72

3.4 Resource Utilization for di�erent module of IPBus on FPGA . . . 73

3.5 Description of the signals used in timing diagram 75

3.6 Resource Utilization and Power consumption by integrated design 76

4.1 Function of di�erent �elds in data packet used for PCIe communi-

cation . 90

4.2 Parameters of the MGT to be set during latency optimization . . 104

4.3 Details of the signals used during latency optimization 104

4.4 Resource Utilization . 113

4.5 Summery of di�erent features of our proposed DAQ system and

di�erent state of the art solutions 113

5.1 Generated syndromes for di�erent adjacent erroneous bits 128

5.2 Generated syndromes for di�erent error patterns 129

5.3 Generated syndromes for di�erent error patterns 130

5.4 Comparison of the proposed codes with other codes 139

5.5 MTTF in Days for di�erent memory sizes 142

6.1 Bit placement strategy in an one dimensional memory array . . . 152

6.2 Variation of error correction coverage with interleaving depth . . . 166

x

LIST OF TABLES

6.3 Comparison between Proposed ECC with the other existing ECC 167

7.1 Summary of error detecting and correcting codes used in this paper 192

7.2 Detection capability of IMMC with di�erent interleaving depth . . 202

7.3 Power Consumption by di�erent models 203

7.4 Fault recovery time for di�erent models 204

xi

Chapter 1

Introduction

To solve the long standing puzzles of the universe that haunt the mankind for

thousand of years, scientists have been trying to widen their knowledge specif-

ically in two extreme directions: macroscopic and microscopic. For the macro-

scopic physics, scientists have developed huge telescopes like hubble telescope,

ARIES Telescope to take the image of the universe, supernova and galaxies.

They have also prepared spacecrafts like Juno [1] (developed by NASA) to gather

information about jupiter, Mangalyaan [2] (developed by Indian Space Research

Organization) to study the atmosphere of the Mars. At the same time, to study

the matter at the subatomic level, scientists have developed high energy acceler-

ators like Large Hadron Collider (LHC [3]), Standford Linear Collider (SLC [4]),

Universal Linear Accelerator (UNILAC) [5]. One of the major objectives of the

ongoing accelerator based experiments is to create initial state of the Bing-Bang

or a matter limited to the inner region of the dense neutron star in the labo-

ratory. Apart from the study of matter at the subatomic level, accelerators are

now a days being used in other domains like structural biology, radio therapy

etc. Though the microscopic and the macroscopic approaches are totally dif-

ferent, they are interrelated and in�uence each other. Giant machines, robust

high speed data transmission networks and complex signal processing algorithms

are integral parts in both of the approaches. Di�erent modern electronics devices

like FPGA, ASICs, Microcontrollers are used to develop such giant machines that

help to implement complex data processing algorithms. This thesis work has been

mainly carried out in the context of development of the readout system of one

1

such experiment, the Compressed Baryonic Matter experiment at the FAIR [6]

complex in GSI, Germany.

1.1 Compressed Baryonic Matter Experiment

FAIR in GSI provides unique research opportunities in the �elds of nuclear,

hadron, atomic, plasma physics and computational biology etc. There are mainly

four researches are going on in the FAIR complex [6]: Atomic, Plasma Physics

and Applications (APPA), Compressed Baryonic Matter (CBM), Nuclear Struc-

ture, Astrophysics and Reactions (NUSTAR) and Anti-proton Annihilation at

Darmstadt (PANDA). The CBM experiment [7] which is under development at

the FAIR complex is one of the major �xed target experiments, and the objective

of this experiment is the exploration of quantum chromodynamics (QCD), the

theory of strongly interacting matter at moderate temperatures and high baryon

(Baryon is a subatomic particle made up of three quarks) density [8]. Phase

diagram depicts the existence of di�erent states of the matter (like solid, liquid

and gas) at di�erent external thermodynamic conditions like temperature and

pressure. From the particle physics we know that quark is the fundamental par-

ticle that form neutron and proton within the atom. Gluon helps to bind the

quarks within the neutron and proton. At a normal temperature and pressure

these quarks and gluons can not be separated. At extreme external conditions

(like at high temperature or at high net baryon density) these quarks and gluons

can be separated and they exist in a plasma like state which is known as quark

gluon plasma (QGP) [9]. This state was said to be present at the time of Bing-

Bang [10] or at the initial stage of the universe. In order to create high baryon

density and high temperature in the laboratory, heavy ions with high ionizing

energy are collided in an accelerator that provide di�erent subatomic particles.

Di�erent detector systems are placed around the point of collision to detect the

generated subatomic particles that helps in the study of the QCD phase diagram.

Based on the arrangement of the collision within the accelerator there are two

types of experiments: �xed target experiment and collider experiment. In the

�xed target experiment, heavy ion beam within the accelerator hits a stationary

target as shown in Figure 1.1(a). Such stationary target may be a chunk of

2

metal or liquid hydrogen in a large container. Number of collisions in the �xed

target experiment can be increased by increasing the thickness of the target.

Placement of detector system is quite easier in such experiment. On the other

hand in collider type experiment two beams are directed to each other and made

to collide within the accelerator like in LHC [11] at CERN . As the beams are very

narrow they need very precise control and steering mechanism to guarantee that

two beams rotating in opposite directions will collide with each other as shown

in Figure 1.1(b). Though placement of detector around the point of collision is

complicated in collider type experiment it provides high energy at the point of

collision. As CBM studies the QCD phase diagram at high baryon density at low

temperature it uses �xed target experiment where a range of target and beam are

used in the range of proton to uranium. CBM experiment aims to �nd the phase

Beam

Magnet

Target

Absorber
Detector

Tracking

(a) Fixed Target Geometry

Beam Beam

Generated particles due to the collision

(b) Collider Geometry

Figure 1.1: Fixed Target Experiment vs Collider Experiment

transition in QCD experimentally where QGP exists. The main challenges of the

CBM experiment is to measure these particles with high precision and statistics.

Hence, di�erent detector subsystems are required to identify the particles (like

muon, mesons, electrons and photon etc.) generated in the CBM experiment.

Arrangement of di�erent detector systems that will be used in CBM experiment

are shown in Figure 1.2 and functionalities of each detector subsystem is described

in Table 1.1. The detectors will send the readout informations to the computer

cluster. Hence, a robust readout system is very much necessary for each detector

system. In this thesis, we have mainly focused on the development of readout

chain of MUCH detector.

3

Figure 1.2: Detector system in CBM experiment [12]

Table 1.1: Function of detectors used in CBM Experiment [12]

Name of the Detector Functionalities
Silicon Tracking Used for track reconstruction and determination
System(STS) of momentum of charged particles

Ring Imaging Chere- Identi�cation and suppression of pions
nkov Detector (RICH) with the momentum below 10 GeV/c

Muon Chamber Detect muons generated from J/Ψ particle
System (MUCH) and light vector mesons

Transition Radiation Used to identify electrons and pions
Detector (TRD)
Time of Flight Used to identify hadron through time of

(TOF) �ight measurement
Calorimeter Measure photon and neutral mesons

1.1.1 Muon Chamber (MUCH) Detector

MUCH in CBM experiment is mainly used to detect dimuons generated from

charmonia (bound state of charms and anti-charms quarks) and light vector

mesons [13] which are very rare particles generated during the collision. MUCH

consists of segmented absorber layer (indicated by green color in Figure 1.3)

made of iron or carbon and gas electron multiplier (GEM [14]) based detectors

are placed in between two segments as shown in Figure 1.3. Each GEM detector

consists of 50 µm thin copper claded kapton foil having 50-70 µm hole diameters

4

Figure 1.3: Schematic view of MUCH detector with segmented absorber [13]

at a pitch of 140 µm and two copper plates that act like cathode and anode.

During the operation, 300-400 volt is applied across the surface of the foils that

creates a high electric �eld inside the holes. The detector volume is �lled with

mixture of Argon and Carbon-di-oxide and when particles pass through the high

�eld region inside the holes it ionizes the gas molecules and generates primary

electrons. These primary electrons are accelerated through drift �eld and create

more electrons through avalanche multiplications. In this way generated electron

cloud is collected on the anode plane and produce the output signal. The gain of

the GEM detector can be increased by adding multiple foils in between cathode

and anode which is known as multi-layer GEM. Figure 1.4 shows architecture of

single layer GEM detector. MUCH detectors will be placed in the downstream

Figure 1.4: Basic structure of single layer GEM detector

of silicon tracking system (STS) [15] detector that measure momentum of the

particles.

5

1.2 Architecture of Data Acquisition System

In order to obtain reasonable statistics for rare particles like J©ψ over a reasonable

running period the interaction rate of colliding ions should be very high and for

CBM experiment it will reach up to 10
7
events/second [16]. For handling such

high reaction rate, CBM in general and MUCH detector in particulars uses a novel

approach of data acquisition. MUCH detector in CBM experiment capture data

using free running and self-triggered [17] (discussed later) FEBs. On the other

hand in traditional accelerator based high energy physics (HEP) experiment,

DAQ organizes the data read-out based on hierarchical trigger decisions. Di�erent

features [18] of the DAQ system used for MUCH detector are:

� Precise time synchronization.

� Fault resiliency.

� Ability to support high data rate and e�cient data aggregation schemes.

� Self-triggered high-speed front-end electronics (FEEs) and compact hard-

ware due to limited space.

� Ability to implement complex data processing algorithm.

In general, DAQ system (shown in Figure 1.5) consists of FEEs, data aggregation

and control unit (DACU), a hierarchical DAQ networks and back-end computing

cluster nodes. FEEs are responsible for acquisition of analog signal from detector

Figure 1.5: Traditional DAQ network architecture [18]

system and conversion of received analog signal to digital signal. DACU helps

6

CAVE

CBMBunker

Low Radiation Zone

Harsh Radiation Zone

Figure 1.6: Planned Building and Cave Infrastructure for CBM Experiment [12]

in control and data synchronization. Hierarchical DAQ network connects the

FEEs to the backend computing nodes where di�erent reconstruction and decision

making algorithms are used to analyze the received data by the detector system.

In case of DAQ system for MUCH detector FEE, DACU and hierarchical DAQ

network are under harsh radiation (i.e within the detector cave), and remaining

portion of the DAQ chain is in the moderate radiation zone as shown in Figure 1.6.

1.2.1 Errors in DAQ system and its mitigation

Electronic devices used in the design of hardware systems for the data transmis-

sion network and data processing algorithm for such HEP experiment are often

a�ected by radiation and channel noises, that may lead to errors in the system's

outcome. Errors may occur in (i) communication link (ii) internal processing

blocks and (iii) memory unit. Here, we have considered the errors occur in all

three places. Most of the modern embedded electronic devices are developed

using silicon wafers which are vulnerable to radiation. Faults occurred due to

radiation in such solid state devices can be categorized into two broad domains:

Temporary fault and permanent fault. Temporary faults lead to temporary mal-

functions that occur in solid state devices and their e�ect is termed as soft errors.

7

Soft errors occur due to ionization of charged particles and may create latch-up

and transient fault. X-ray radiation, photocurrent caused by ultraviolet and other

low energy gamma ray are responsible for soft errors. Soft errors are not repro-

ducible and sometimes lead to single bit upsets (SBU) and multiple bit upsets

(MBU) in di�erent embedded devices. E�ect of soft errors into any logic will

be transferred to the output of �ip-�op or memory if its period of occurrence is

higher than the period of the clock which drives the circuit. Permanent faults in

solid state devices occur due to lattice dislocation by protons, α particles, heavy

ions and high energy gamma rays. This permanently change the arrangement of

atoms within the crystal lattice and leads to single event induced burnout and

rupturing of gate of the MOSFET. Sometimes higher ionization dose for short

time may partially anneal the damage due to lattice dislocation that may reduce

the degree of damage. The permanent faults are of two types: one is permanent

recoverable fault and other one is permanent nonrecoverable fault [19]. When in-

cident charge particles permanently damage the logic blocks within the embedded

devices, nonrecoverable faults occur and it can only be sorted out by replacing

the defective logic blocks physically. Permanent recoverable can be mitigated

either using built in error detection and correction (EDAC) code or by rewriting

the memory of embedded devices and power on reset.

Methods to protect solid state devices from the e�ect of radiation can be

broadly classi�ed into categories: Physical and logical. Physical methods include:

� Use of di�erent insulating substrate instead of traditional silicon wafer.

Generally, silicon on insulator (SOI) or sapphire are used in these cases.

� Use Bipolar junction transistor or emitter couple logic based transistor in-

stead of CMOS based transistor.

� Proper radio active shielding can be used to protect solid state devices from

the e�ect of radiation.

� Magnetoresistive RAM (MRAM) and capacitor based DRAM are more ro-

bust compared to static RAM in the radiation zone.

� Use of wide band gap material like silicon carbide or gallium nitride as

substrate make the device more robust in radiation environment.

8

On the other hand logical method includes majority voting, parity based error

correcting methods, redundant logic, use of watchdog timer etc. Here we have

mainly focused on logical methods using multi-bit ECCs to mitigate the error in

the solid state devices occurred due to radiation because other logical methods

either consume large memory or have higher latency. This issues justify the

need of di�erent low complexity EDAC algorithms to be incorporated within the

electronics devices to minimize the errors causing due to SBUs and MBUs in the

system. Designing of e�cient error correction schemes in the hardware without

hampering normal system operation should also consider the trade o� between

correction coverage and resource utilization. Attaining higher code coverage with

low resource requirement is one of the key research issues in error correction

mechanism.

As a choice of target platform, the embedded designers have three choices

namely, (i) standard micro-controller or microprocessor platform (ii) custom hard-

ware platform based ASICs and (iii) custom as well as re-con�gurable hardware

platform based on FPGAs.

1.2.2 Microprocessor and Micro-controller

Micro-controller is mostly used for embedded system designer due to its �exibility,

cost e�ectiveness and availability. Micro-controllers are single chip microcomput-

ers, that includes processing unit, memory and I/O elements in the same chip.

Though micro-controller based system provides easy solution they are normally

used for speci�c application as they have limited resources and are driven by soft-

ware instructions. Their performance is limited by the fact that they only provide

generic processing core, which cannot satisfy the need of higher performance as

compared to custom application speci�c cores. Some of the well known micro-

controller platforms for embedded applications are 8051, Atmega etc. In CBM

experiment, micro-controllers are used for detector control system, low voltage

power distribution etc.

9

1.2.3 Application Speci�c Integrated Circuits

ASICs are mainly designed for particular application instead of general purpose

usage. Designs implemented on ASICs cannot be changed once the chip is fabri-

cated or manufactured. In the modern embedded application continuous upgra-

dation is needed to cope up with the advancement of technology. In such case

ASIC is not good solution. Moreover, with the inclusion of partial programming

capabilities in modern programmable logic devices, the downtime of the system is

further reduced as the hardware upgradation in the partially recon�gured region

can work concurrently while, the other regions are on execution. Though the cir-

cuit implementation can be highly optimized in terms of speed, area and power

consumption, inability to adapt design changes after manufacturing is a serious

disadvantage for ASICs. Modern ASIC fabrication processes are also costly, time

consuming and hence, they are used only for some critical applications like high

speed signal processing in satellite, mobile devices, televisions etc.

1.2.4 Field Programmable Gate Array (FPGAs)

Hardware design is �exible using general purpose processors that means user can

modify the design as per need by using high level programming languages without

modifying the underlying processor architecture. General purpose processor does

not bother about structure of the algorithm instead their focus is to support

the processing need of a large variety of algorithms. Hence, in general, execution

time and power consumption for a algorithm is high on general purpose processor.

On the other hand ASICs provide less processing time and power consumption

for an algorithm but �exibility is less. Recon�gurable devices like programmable

logic array (PLA), programmable array logic (PAL), complex programmable logic

devices (CPLD) and FPGA �lls this gap and in an ideal case, combines the

best of both; namely, the speed of ASICs to the �exibility of general purpose

processors. Figure 1.7 provides trade-o� between performance and �exibility

for general purpose processor, ASICs and FPGA. Though there are di�erent

recon�gurable devices available in the market we are mainly focused on FPGA in

this thesis. Xilinx, Altera, Actel are the leading vendors that manufacture FPGA.

Main units inside the FPGA are recon�gurable functional units, programmable

10

General Purpose
 Processor

 Field
Programmable
 Gate Arrays

Application Specific
Integrated Circuit

Performance

Flexibility

Low

Low

High

High

Figure 1.7: Performance-�exibility graph among ASIC, FPGA and general pur-
pose processor

CLB CLBCLB

CLBCLBCLB

CLBCLBCLB

CLBCLBCLB

CLBCLBCLB

Switch Block

Input/Output
 BlockB

R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

Figure 1.8: A Generic FPGA internal Architecture

switch matrix and I/O interfaces as shown in Figure 1.8.

During implementation of any logic in the FPGA, recon�gurable functional

units or fabrics are used and hardware blocks are interconnected by the pro-

grammable switch matrices. Performance of the implemented logic on FPGA

depends on the �exibility and e�ciency of the recon�gurable fabrics. On the

11

other hand recon�gurability of FPGA devices are fully depends on size of the

recon�gurable functional units or granularity. Based on the size of granularity

FPGA devices can be classi�ed into two broad categories [20]: �ne-grained and

coarse-grained. Look up tables (LUTs) are basic functional unit of �ne-grained

architecture and it is typically used to implement single function on small num-

ber of bits. On the other hand Arithmetic logic unit (ALU) is the basic unit

of coarse grained architecture and hence, complex and large function can be im-

plemented using this architecture. In general, modern FPGA like seven series

FPGA of Xilinx, Arria and Stratix series FPGA of Altera follows �ne grained ar-

chitecture where recon�gurable functional units consist of 6-to-1-bit LUTs which

are arranged in clusters. A collection of LUTs, storage element and multiplexers

form con�guration logic block (CLB). CLB of Xilinx Kintex-7 FPGA consists

of two slices [21]: SLICEL and SLICEM. SLICEL is only used for logic oper-

ation. Along with logic operation SLICEM is also responsible for storing data

using distributed RAM and shifting data with 32-bit registers. Each slice con-

sists of four six input LUTs, eight �ip-�ops, multiplexers and arithmetic carry

logic. The number of LUTs and �ip-�ops within the CLB varies depending on

the di�erent FPGA vendors. Modern FPGAs are integrated with hard processor

core like PowerPC in Virtex, ARM in Zynq etc and soft core like Microblaze,

NIOS which can be used for any processor based complex embedded design using

FPGAs. Con�guration data also known as bit �le programmed CLB and pro-

grammable switching blocks in the con�guration memory during recon�guration

of the FPGA devices. Based on the nature of con�guration memory FPGAs

can be classi�ed into three categories. If con�guration data is stored in SRAM

within FPGA then it is known as SRAM-based FPGA and if con�guration data

is stored in Flash memory then FPGA devices are known as Flash-based FPGA.

Antifuse-based FPGAs are slightly di�erent from the other two in the sense that

they can be programmed only once. Antifuse element does not conduct initially

but during programming the antifuse switches are burned out that cannot be

returned into the initial state. Maximum modern FPGAs are either �ash based

or SRAM based.

Now a days FPGAs are widely used in di�erent embedded applications due

to their multiple advantages briefed as follows:

12

� FPGA can be used as co-processor of the CPU in the modern computer or

as an accelerator using high speed bus, like PCIe.

� FPGAs are interconnected with high speed peripherals like USB, optical

transceiver, Ethernet, PCIe for data transfer with external devices.

� FPGA supports partial recon�guration that helps to replace a module of

the design without hampering the functionalities of other modules.

� Memory access time inside FPGA devices are very less.

� FPGA also supports remote recon�guration.

FPGAs are commonly used to achieve high performance computation as they

o�er spatial parallelism involving the con�gurable blocks.

1.2.5 FPGA Design Flow

The design �ow starts with the design speci�cations given by the user and �nishes

into a working design in an FPGA. The design �ow for a FPGA based system

is shown in Figure 1.9. Initial stage involves problem decomposition, project

requirement and functional simulation. In the next stage for design entry there

are di�erent techniques like hardware description language (HDL), schematic and

combination of both. During the logic synthesis HDL codes are mapped into gate

level net-list and the net-list is stored as Native Generic Circuit (NGC) �le. The

implementation process involves three steps: Translation, mapping, placement

and routing (PAR). In the translation, all the input net-lists combine with the

constraints to form a logic design �le and the static data into Native Generic

Database (NGD) �le. Mapping process divides the whole design into multiple

sub-blocks and try to �t into the target FPGA devices to generate the Native

Circuit Description (NCD) �le. PAR maps the sub-blocks into logical blocks

according to the constraints provided by the user and creates the interconnection

of the logical blocks utilizing the FPGA fabric. Static timing analysis after MAP

or PAR helps to �nd the path delay and timing violation for the design derived

from the design logic. Automatic mapping can also be done by some tools like

automatic HDL generators [22]. Lastly, using the programming �le (bit �le or

13

 Design
Specification

 HDL
Coding

Graphical
 Design

Simulation

 Logic
Synthesis

Gate-Level
 Netlist

Place
 &
Route

Timing
Model

 Timing
Simulation

 Bitfile
Generation

FPGA

Figure 1.9: HDL based design �ow for FPGA based system design

con�guration data) the FPGA is con�gured or programmed. Design softwares

o�ered by the FPGA vendors support the complete design �ow.

Embedded systems based on FPGA devices are vulnerable to external noise

(speci�cally created by radiation) since physical access to these devices can be

done at an ease. In many of the cases the faults are caused unintentionally due to

the natural e�ects e.g radiation, cosmic ray. Detecting the errors occurring due

to these faults and also correcting them in the hardware will make the system

more trustworthy. In CBM experiment, radiation level is so high within the

cave that the commercial-of-the-self (COTS) FPGAs cannot be used. One of

the common solution to prevent FPGA devices from the e�ect of radiation is

to use radiation hardened (Radhard) FPGAs like space-grade FPGAs provided

by Xilinx [23], Altera or Microsemi [24] but they are more costly compared to

the COTS FPGAs [25] and are also few generation behind than COTS FPGAs.

Hence, usage of SRAM-based COTS FPGA is only possible in such radiation

environment with appropriate error mitigation techniques. Though ASICs are

not very �exible and require more developmental e�ort, it is much less susceptible

to ionizing radiation than COTS FPGA [26]. In some areas within the CBM cave

(like near the detector system) use of ASICs are better option compared to FPGAs

as ASICs are more radiation tolerant compared to FPGAs. There are some

other areas with (comparably) modest radiation levels like in CBMBunker [7] as

shown in Figure 1.6 where FPGAs might be the better option to use. Radiation-

induced charge particles like alpha, beta can either corrupt user data in the

14

communication link which connects di�erent electronics devices in the readout

chain or can directly damage the FPGA devices itself. Radiation corrupts either

single bit or multiple bit in user data stored in the RAM or con�guration data in

con�guration memory of FPGA devices. In this thesis error mitigation techniques

have been developed for safe guarding the con�guration data of FPGA devices

in con�guration memory as well as user data in communication links.

1.3 Research Motivation

� Design and development of high speed DAQ system is very much needed

that can work without human interference in the accelerator under harsh

radiation environment. Hence, there should some methods for monitoring

the status of the DAQ system.

� Radiated charge particles may corrupt the data packets during the trans-

mission through high speed interconnect within the DAQ system. Hence,

multi-bit error correcting codes are needed to correct the corrupted data in

high speed interconnection like optical �ber. Apart from the error in the

data stream indeterministic latency added by di�erent memory elements is

a critical issue for any high speed data communication. It is very much

needed to �x the latency in the high speed communication by bypassing

internal memory elements for clock domain crossing and phase alignment.

� Solid state devices like FPGA used for implementation of data processing

algorithm may also be a�ected by radiated charge particles generated dur-

ing di�erent experiment or cosmic ray during space exploration. In order to

mitigate the soft errors arise due to SBUs and MBUs from radiated charge

particles e�cient error correcting codes with less overhead and simple de-

coding circuits are needed.

� With the increase of density of CMOS transistors in memory element like

�ash memory probability of corruption in stored data also increases. When

the MBUs are adjacent to each other they form an error cluster and some-

times traditional multi-bit error correcting codes are not e�cient against

15

clustered error. Hence, simple clustered error correction methods with small

error correction time is very much needed for high density memory elements.

� To maintain the uninterrupted operation of a real time system there should

some provisions for repairing a functional module without hampering func-

tionalities of other modules.

1.4 Research Objective

The main research objectives of this thesis are:

� Testing and characterization of front-end ASICs that will be used to readout

the data from MUCH detector and integration of front-end ASICs with the

remaining portion of readout chain.

� FPGA implementation of IPBus protocol over one Gigabit Ethernet for

remote monitoring of di�erent registers of the DAQ system.

� Development of high speed DAQ systems having error resilient latency op-

timized communication link and direct memory access controller with PCIe

interface. An e�cient memory management algorithm is also proposed for

data aggregation before data transmission through PCIe.

� Hardware implementation of clustered error or error arises due to adjacent

MBUs correction techniques for high density memory element like MLC

�ash memories are discussed. The proposed methods have less error cor-

rection time, low decoding complexity and low overhead compared to the

state of the art solutions.

� Development of di�erent SBUs and MBUs mitigation techniques for the

con�guration memory of FPGAs and their e�cient hardware implementa-

tion.

� Dynamic partial recon�guration with proper hardware scheduling algorithm

is developed for error correction in a module within a FPGA devices with

minimal interface to the normal system operations.

16

1.5 Organization of the Thesis

In this thesis, our contributions target some speci�c design and implementation

issues to overcome some of the challenges existing in the present state-of-the-art

embedded system under radiation environment. Related research work and moti-

vations of the thesis is described in Chapter 2. Chapter 3 deals with testing and

characterization of front end ASICs and its integration with FPGA based GBTx

emulator and data processing board using di�erential electrical line and optical

�ber. Development of FPGA based data aggregation and control system for radi-

ation environment is proposed in chapter 4. In this chapter we have also proposed

an e�cient memory management module that helps data aggregation removing

path delay of the data packets before processing by back-end computing nodes.

Chapter-5 deals with a latency optimized clustered error correction technique in

MLC �ash memory chips using shortened product code. A novel algorithm using

Hamming product code with selective bit placement and frame interleaving for

soft error mitigation in the con�guration memory of FPGA devices and its hard-

ware implementation is described in chapter-6. Single bit and multi bit upset

mitigation techniques using simple parity based coding and erasure code along

priority based hardware scheduling algorithm is discussed in chapter-7. Finally

chapter-8 gives brief conclusion and future scope of the thesis.

17

Chapter 2

Related Research Work

In the late sixties and seventies before di�erent high performance electronic de-

vices like FPGA, ASICs came into the market, FEEs in di�erent HEP experiments

were read-out by simple minicomputers in the DAQ system that could handle only

a few hundred of data channels [27]. Due to lack of parallelism, standard bus ar-

chitecture and interconnection it could support data rate only upto a few kilobytes

per second. In 1964, Atomic Energy Commission of USA de�ned standards for

connector, front end module, power and signal level of Nuclear Instrumentation

Module (NIM) used in di�erent HEP experiments but it did not provide any

speci�cation for the back-end bus architecture of the DAQ system [28]. In 1969,

European studies on Norms for Electronics (ESONE) introduced a computer con-

trolled modular bus architecture known as Computer Automated Measurement

and Control (CAMAC) [29] but it was also lacked of parallelism and limited to low

data rate applications only. Authors in [29] proposed a PC-CAMAC based DAQ

system for the measurement of correlation between the positron annihilation life

time and momentum of positron-electron pair using multiple detectors. In 1970,

a NIM based DAQ system was developed where FEE modules were readout by a

minicomputer using CAMAC as centralized readout bus architecture [30]. With

the increase of detector resolution and number of readout channels, event rate

of the detector increases which in turn increases data transfer bandwidth. In

order to support the huge data transfer rate and data storage requirement, NIM

and ESONE jointly developed a new kind of bus architecture known as Fastbus

architecture. Fastbus architecture has multi-segment and multi-host architecture

18

Detector System

 Host
Computer

Front End

Event Building

Figure 2.1: Tree like distributed DAQ architecture

and supports wide bandwidth [31]. Use of microcontroller like Motorola 68000

in development of DAQ system had started in late eighties and it led to the de-

velopment of another new bus architecture known as VERSA Module Europe

(VME) bus [32]. Even with the presence of wide bandwidth bus architecture like

Fast bus,VME or CAMAC, high speed front end module like NIM, existing DAQ

systems were unable to support huge data rate required in di�erent experiments

like ALEPH experiment in CERN [33]. Typical tree like structure of DAQ sys-

tem shown in Figure 2.1 consisting of FEEs in the fast level and event builders in

higher level help to handle data rate of several megabytes per second. The tree

like structure can handle huge data by �ltering out the non interesting events us-

ing the so called multi-level triggering [34]. These DAQ structures require more

complex data format for synchronization and event time stamping. Though the

triggering increases complexity of DAQ system it is very useful to remove un-

necessary data before storing the data and reduces overload in the high speed

interconnection.

Triggering in Experimental Physics Triggering is a mechanism for decid-

ing the events in the particle detector that need to be recorded for future data

analysis in the back-end computing nodes. Triggering is very important in the

experimental physics due to the limitation of computing power, data handling

capability and storage capacity of the memory devices. Selectivity of a trigger is

de�ned as the ratio of the trigger rate to the event rate [35]. In general, two types

19

of triggers are available in experimental physics: Trivial triggers and non-trivial

triggers [36]. In trivial triggers, data is recorded in a periodic interval or in a way

that is independent of the properties of events being recorded. On the other hand,

in non-trivial trigger events are recorded based on the properties of the events.

Two parameters namely the frequency at which events occur and the complexity

of each event decide the type of trigger that is needed in the experiment. In both

of the cases there is one central trigger unit in the back-end that decides which

events are to be recorded and based on that, it sends signal to the FEEs. This

makes the FEEs more complex and there is a delay or latency for transmission

of trigger from the central trigger unit to the FEEs. Trigger generally uses par-

allelized design that exploit the symmetry of the detector systems i.e the same

kind of operations are performed on di�erent parts of the detector systems at

the same time. In global sense, the triggers are serial in nature and divided into

di�erent levels. In level triggered systems, each level decides the input of the

following level that has more time and information to take a better decision. As

for example, ATLAS experiment located in CERN uses three di�erent levels of

trigger [37] as shown in Figure 2.2. The �rst level is based on the electronics

placed near the detector system and reduces event rate from 40 MHz to 75 kHz.

Level-2 trigger is a part of the high level trigger (HLT) and is implemented using

optimized software algorithm. Level-3 uses event �lter (EF) that is also part of

HLT and implemented using software algorithm [37]. With the increase in the

level of trigger, data rate and global trigger rate reduces so that the �rst level

trigger is always the fastest one compared to higher level triggers.

Though trigger based system reduces the back-end data processing complexity

it may create a problem when the objective of the experiment is to record rare

events. In order to record the rare events, event rate should be very high. In

these cases data will be recorded initially using FEEs and then there will be

an online data event selection mechanism that removes unnecessary background

events before storing the data for future analysis. This process is known as self-

triggered mechanism. Apart from the reduction of chance of misdetection of rare

events, advantages of such self-triggered mechanism are:

� Complex event selection algorithm can be easily implemented in software

compared to hardware trigger.

20

Figure 2.2: Schematic overview of Atlas experiment in CERN [37]

� Software based event selection algorithms can easily adapt new criteria com-

pared to hardware based trigger algorithm.

� In self-triggered system, detector dead time due to bu�er read out can be

reduced.

Disadvantages of self-triggered systems are handling of huge data, global time

distribution and time synchronization of the full read out chain.

Use of high speed interconnection like Ethernet, Myrinet [38], optical �ber,

switch based event builders, PCIe based back plane interface helped the mod-

ern DAQ system to handle data rate and trigger signal in the order of Gigabit

per second (Gbps). Apart from high speed data transfer, modern DAQ systems

use complex data processing algorithm for di�erent purposes like feature extrac-

tion, clustering and data aggregation among others. In order to implement such

complex algorithms sometimes arithmetic logic units (ALU) present in general

purpose processor may not be su�cient. With the increase of the channel number,

more data samples enter into the DAQ in parallel and general purpose proces-

sor serialize them before processing. The e�ciency of the DAQ system increases

many folds if the DAQ can process the data samples in parallel. In the present era

21

of embedded system only FPGAs and ASICs are suitable to sort out the above

mentioned problem due to presence of huge number of digital signal processing

(DSP) slices (equivalent to ALU for general purpose processors) [39]. As for ex-

ample, the number of DSP slices in virtex-6 series FPGA of xilinx varies from

288 to 2016 [40]. These huge number of DSP slices help to implement di�erent

complex algorithms and process data in parallel. The on �eld programmability,

modularity makes the FPGA more suitable for modern DAQ system. High gate

count in FPGA devices help modern DAQ system in di�erent ways:

� Acceleration of complex data processing algorithm.

� Integrated system on chip based approach helps in implementing various

complex functions on FPGA fabrics.

� Recon�gurability for design upgradation.

Use of FPGA like devices and PCIe like back-end interface give freedom to the

designer for either on-board data processing or PCIe based backplane data pro-

cessing. On-board data processing scheme processes data in di�erent level of

hierarchical DAQ network and only useful data will be sent to the computing

nodes. This reduces the data processing load in the computing nodes and helps

to distribute the data processing loads throughout the DAQ network. At the

same time it increases the complexity of the DAQ network. In the data process-

ing across the PCIe backplane data will be processed only in back-end computing

nodes and devices in di�erent levels of hierarchical DAQ network will act as data

aggregator. Here computer in the backend should have multi-core CPU, and

provide power and mechanical support to multiple PCIe cards.

In the modern digital world, single core or even dual core 32-bit or 64-bit

processors are not su�cient for implementation of complex data processing al-

gorithm or analyze huge data. In order to support big data analysis, di�erent

companies have developed multi-core processor like Xeon by intel and Ryzen by

AMD [41]. Multi-core technologies are also taking lead roles in embedded com-

puting domain to handle huge data like Xilinx Zynq UltraScale MPSoC [42] has

Quad-core ARM® Cortex�-A53 and Dual-core ARM Cortex-R5. Along with

22

the huge data processing within one device, high speed data transmission be-

tween multiple devices are also very important in modern day applications like

data communication between di�erent smart phones, biomedical devices, data

acquisition system used in satellite and some real time experiments. The need

of FPGA based real-time data communication is of special interest where FPGA

based DAQ systems are built to capture, store, process and transmit the data

generated from real time experiments [43], [44].

In traditional DAQ systems, FEBs capture data from sensors through high

speed LVDS link, process it and send it to the back-end storage devices through

Ethernet or RS232 for further analysis. Authors used FPGA-based DAQ for

positron emission tomography in [45] and for optical tomography in [46]. In [45],

each DAQ module comprises of a position sensitive photomultiplier tube, LSO

scintillator crystal block, analog signal conditioning circuits, a digitizer, an FPGA

module for digital processing and transmission of collected data to the computer

cluster. A general purpose FPGA-based DAQ controller is developed by the

authors in [47] that can easily be used in di�erent applications with simple mod-

i�cations in software or �rmware part. The generic controller in the proposed

framework is developed with both hard processor (PowerPC) and soft processors

(Microblaze) and can be used with or without real time operating system like

Operating System Embedded (OSE) as per the user requirement. Authors in [48]

developed a Gigabit Optical Serial Interface Protocol (GOSIP) for communica-

tion over optical �ber and implemented PCIe to optical link interface in FPGA

for the DAQ system with a stable data rate of 1.6 Gbps. It is basically a master

slave protocol where the front end card works as slave and PCIe card works as

master. Here each master is capable of handling multiple slave devices.

When the DAQ system will be used for di�erent critical applications robust-

ness of the system against external disturbance is very important. Main prob-

lems of these conventional DAQ systems are low data rate and resiliency against

the SBU and MBU in the radiation environment. An optical link between two

computing nodes having PCIe interface with a data rate of 8.5 Gbps has been

proposed by the authors in [49] where they have used PCIe hard IP available

in ALTERA Stratix IV FPGA board. A high-speed custom data transmission

protocol over optical �ber is proposed by Hao Xu et.al in [50] for real-time data

23

acquisition in Beijing Spectrometer III (BESIII) trigger system. Here they have

used Virtex-II pro FPGAs of Xilinx that can handle data rate upto 6.25 Gbps.

Liansheng Liu et.al presented the development of a �ber channel node with PCIe

interface for avionics environments in [51] where each node consists of two mod-

ules: FPGA module and PowerPC module. Two nodes are connected by optical

�ber through Small Form Factor Pluggable (SFP) interface and maximum data

transfer rate achieved in this case was 2.125 Gbps. Serial Front Panel Data Port

(SFPDP), another high-speed data transfer protocol implemented on FPGA by

authors in [52] used to capture data from DSP unit through Extended Attach-

ment Unit Interface (XAUI) with di�erent speeds: 1.0625 Gbaud, 2.125 Gbaud,

and 2.5 Gbaud. In [53], authors have used a bus master DMA along with a 4-lane

second generation PCIe link to transfer the stream data from FPGA to PC with

the data rate of 784 Mbps.

In new generation high intensity HEP experiments, millions of free stream-

ing high rate data sources are to be readout [54]. Free streaming data can only

be controlled by thresholds as there is no trigger information available for the

readout. Therefore, these readouts are prone to collect large noise and unwanted

data. For this reason, these experiments can have output data rate of several

orders of magnitude higher than the useful signal data rate. It is therefore nec-

essary to perform the online processes on the data to extract useful information

from the full data set. Without trigger information, pre-processing on the free

streaming data can only be done with time based correlation among the data sets.

Multiple data sources have di�erent path delays and bandwidth utilizations and

therefore the unsorted merged data requires signi�cant computational e�orts for

real time manifestation of sorting before data analysis. Commonly used sorting

algorithms like bubble sort [55], merge sort [56], heap sort [57] either consumes

huge memory space or have high latency. In order to increase the speed of the

sorting process, various hardware sorting algorithms have been proposed by the

authors in [54, 58], but none of them are suitable for sorting online data stream.

In general, the DAQ system in a HEP experiment handles large data in a

harsh radiation environment [59]. Error control strategies in the communication

channel under radiation can be classi�ed into two broad categories: Automatic

Repeat Request (ARQ) and Forward error correction (FEC). In ARQ based sys-

24

Channel
Encoder

 Input
Message

Input Buffer
 and
 Controller

Transmitted
 Message

Channel
Decoder

Output Buffer
 and
 Controller

Output
MessageAcknowledgement

 Signal

Figure 2.3: Basic architecture of ARQ based communication system

tem communication is in two ways i.e from transmitter to receiver and from

receiver to transmitter. Error control in ARQ system [60] is achieved by error

detection and retransmission but error correction is not possible. A typical ARQ

system is shown in Figure 2.3. When errors are detected in the receiver using

any error detection algorithm like CRC, channel decoder issues a negative ac-

knowledgment (NACK), otherwise positive acknowledgment will be sent to the

transmitter. There are three variants of ARQ schemes: stop and wait scheme,

Go-back-N scheme and selective repeat scheme. In stop and wait ARQ scheme,

transmitter has to stop after transmitting every code word and wait for acknowl-

edgment from the receiver. Though the input bu�er size in transmitter is small

to store single message, the delay time between two consecutive words is very

high. In Go-back-N scheme, messages will be sent continuously until transmitter

receives a NACK and request for retransmission. When the transmitter receives

NACK, it goes back N words in the bu�er and retransmits messages starting

from that point discarding N-1 intervening words. Though it reduces transmis-

sion delay, input bu�er size in the transmitter side increases. In the selective

repeat scheme, transmitter will retransmit only erroneous message. The ARQ

based system is not suitable for high speed real time data transmission as data

cannot be stored in the communication path.

On the other hand in FEC based error control technique, errors are corrected

at the receiver so retransmission is not needed in this technique which is suit-

able for high speed communication. Though FEC based error control technique

automatically corrects errors, it requires more redundant bits, larger bandwidth

and complex decoder compared to ARQ based system. Authors in [61] pro-

posed a high speed serial o� and on-chip communication system with single error

correcting and double error detecting (SECDED)(63,56) Hamming code and im-

25

plemented using 0.25µm CMOS technology. Block codes like Bose, Chaudhuri,

Hocquenghem (BCH) [62], Reed Solomon (RS) are the most commonly used

ECCs in a high speed communication system. In [62], authors implemented a

braided block code with BCH as the component code for high speed optical com-

munication. Not only block codes, memory based convolutional code, turbo code,

and Low Density Parity Check code (LDPC) [63] are sometimes used to make

the communication system robust against di�erent environmental hazards, but

their decoding circuit complexities are quite high. In general, performance of

long distance high speed communication is limited by the low net coding gain

of the FEC used in the system. Authors proposed a layered Quasi-cyclic LDPC

(QC-LDPC) architecture in [64] that have good error correcting performance, low

complexity, high throughput and high code rate. They have implemented both

regular and irregular QC-LDPC on FPGA with di�erent throughputs. The most

common method for decoding of convolutional code is viterbi algorithm that con-

sumes large area, huge power for high speed decoder. A novel viterbi decoder

architecture is proposed in [65] that reduces the computational complexity and

power consumption compared to traditional viterbi decoder with negligible per-

formance reduction. An area e�cient interleaved convolutional code along with

its viterbi decoder architecture is proposed in [66] for high speed communication

where authors have used a parallel processing with register exchange methods

during the decoder design.

The probability of occurrence of an error in a communication channel can be

reduced exponentially by increasing the data block length which also increases

decoding circuit complexity. Dave Forney in [67] showed that concatenated code

can be used to reduce the probability of error exponentially without increasing

decoding complexity further. In general, a concatenated code is composed of

an ECC as the outer code and another ECC as the inner code. In high speed

communication, block codes are used as a component code instead of convolution

code due to its high performance and low implementation complexity. Concate-

nation between RS(255,239) and BCH(2184,2040) code and two BCH codes are

presented in [68], [69] respectively for high speed architecture. In [70], authors,

concatenated RS code with turbo code for Advanced Orbiting System (AOS) and

showed that the performance of concatenated code is better compared to other

26

convolutional or block code in terms of coding gain and decoding delay. They

achieved the data rate of 3 Mbps. A novel high speed communication system us-

ing concatenation of RS and QC�LDPC Code is proposed in [71] where authors

proved that concatenation improved BER by 3 dB. Here RS code is used as outer

code due to its good burst error correcting capability and QC-LDPC is used as in-

ner code. Random interleaver is placed in between RS and QC-LDPC to enhance

error correction capability without increasing redundancy. Two turbo codes are

concatenated in [72] to reduce implementation cost compared to standard 3GPP

turbo code which achieved the bit rate of 4.11 Mbps compared to 75.264 kbps in

standard 3GPP turbo code. In [73], a concatenated code by combining Recur-

sive Systematic Convolutional (RSC) code and LDPC code is developed which

shows better Block Error Rate (BLER) compared to conventional LDPC codes

and turbo codes.

Minimization of latency in the transceiver of a high speed communication

system is a key factor for time critical applications. Latency is the time a packet

of data takes to get transferred from one point to another point within the system.

Using parallel decoding strategy, authors reduce the latency in the receiver from

1928 clock cycles to 578 clock cycles in [69]. In some critical applications, link

latency must remain �xed after each power up or reset. By using changeable

delay tuning technology and dynamic clock phase shifting authors proposed �xed

latency transceiver in [74]. Di�erent bu�ers within the transceiver are used for

clock domain crossing and phase alignment which increases the latency of the

whole system as described in [75].

Apart from the user data in the communication channel or block RAM on

FPGA, con�guration data in the con�guration memory of FPGA devices may

also be a�ected by radiation. In Figure 2.4, con�guration memory of FPGA with

the series of 1's and 0's represent the function of the routing and logic elements

interconnection switch, LUT, and Flip-Flop to implement a logical NAND and

NOT gate into FPGA. Figure 2.5 shows a SEU (sometimes known as bit �ips)

changes the data in con�guration memory which leads to an unintended signal

routing and change in the logical function. E�ect of SBUs and MBUs in FPGA

can be broadly classi�ed into two broad categories: temporary or transient and

permanent faults [19]. E�ect of transient faults into any logic will be transferred

27

1001110010001110101
0101101110011001010
1111000011001010100
0001110011010101001
1110001010101000010
1010101000000000010
0101000000110100000
0000001111000001100

10100111001
01001100101
11001101100
10101011001
11100001110

1

0
FF

FF

Figure 2.4: Implementation of NAND and NOT logic in an FPGA

1001110010001110101
0101101110011001010
1111000011001010100
0001110011010101001
1110001010101000010
1010101000000000010
0101000000110100000
0000001111000001100

10100111001
01001100101
11001101100
10101011001
11100001110

1

0

FF

FF

1

0

1
00

SEU

Figure 2.5: SEU causes error in routing logic and NAND gate in an FPGA

to the output of �ip-�op or memory if its period of occurrence is higher than the

period of the clock which drives the circuit. On the other hand permanent faults

are of two types: one is permanent recoverable fault and other one is permanent

nonrecoverable fault [19]. When charge particles permanently damage the logic

or switching blocks within the FPGA, permanent nonrecoverable faults occur

and it can only be sorted out by replacing the defective logic blocks physically

(normally it is done by routing [76]). Permanent recoverable faults in FPGA

may be corrected either by rewriting the content of the con�guration memory or

by using built-in EDAC code. In this work, only permanent recoverable faults

are considered.

One of the common solution to prevent FPGA devices from the e�ect of radia-

tion is to use radiation hardened (Radhard) FPGAs like space grade FPGAs, but

they are more costly compared to the commercial-of-the-self (COTS) FPGAs [25]

and are also few generation behind than COTS FPGAs. Hence, in di�erent com-

mercial applications, COTS FPGAs are used with various error mitigation tech-

28

niques. Triple modular redundancy (TMR) [77] and concurrent error detection

(CED) [78] are most commonly used techniques in FPGAs for error mitigation. In

TMR, three identical logic blocks having the same functionalities are connected

in tandem and �nal output from the system will be obtained through majority

voting. An additional error detection circuit is used along with the main circuit

in CED [78] and when any error is detected, the main circuit recomputes or rolls

back the whole operation from the beginning. The above mentioned schemes

consume large area, huge power and are not suitable for real time applications.

Large overhead of TMR can be reduced by using partial TMR [79] where TMR

is used only for critical portions of a circuit instead of the whole design. Another

common method of error mitigation in FPGA is scrubbing where one copy of

original bit �le (also known as the golden copy) is stored separately in a Rad-

hard memory before downloading it into the con�guration memory. There are

two type of scrubbing: blind and readback scrubbing. Blind scrubbing download

the golden copy into the con�guration memory with a periodic interval. On the

other hand readback scrubbing download the bit �le only if error is detected in

readback con�guration �le. It reduces the e�ect of accumulated error in FPGAs

and increase the lifespan of the FPGA devices [80]. Sometimes TMR can also be

used intelligently with scrubbing to reduce the e�ect of SBU as described in [81]

for Virtex FPGAs. Both of the above mentioned schemes continuously access

external Radhard memory, which increases the cost and introduces some delay.

Use of partial recon�guration with scrubbing can reduce the e�ect of delay as

described by the authors in [82] where a part of the bit �le will be downloaded

during scrubbing without downloading the whole one.

Di�erent commonly used ECCs like BCH, RS [83], LDPC [84] can be an alter-

native solutions to correct errors in the con�guration memory of FPGAs against

soft error though the hardware complexity and resource utilization of the above

mentioned codes are very high. Hence, simple low complexity ECCs are always

preferred to correct errors in the con�guration memory of FPGA devices. With

the increase of the error correcting capability of EDAC code, decoding circuit

complexity and latency also increase. To support real time applications, EDAC

codes with less complex decoding circuit and good error correcting capability are

always preferred. The most common technique to correct single bit error in con-

29

�guration memory of FPGA is Hamming code [85]. Sometimes bit interleaving

with Hamming code increases error correction capability many times as shown

in [86]. Authors in [87] showed that selective bit placement within the mem-

ory element enhances detection and correction capability of Hamming code for

multi-bit adjacent errors. Soft error mitigation controller (IP blocks) provided by

Xilinx based on CRC and EDAC can correct at most two adjacent bits [88].

Error correction in memory unit can be improved by using two-dimensional

ECCs and mix code (combination of multiple ECCs). In [89], authors used the

Hamming product code (HPC) to correct MBUs in each con�guration frame.

They had also proposed one special kind of memory as the hardware implemen-

tation of their proposed code is tough in the conventional con�guration memory.

A new kind of mix code combining Euclidean Geometry LDPC code and Ham-

ming code with low overhead is proposed in [90] for error correction in storage

cell and decoding circuit. Authors claimed that they achieved good error correct-

ing performance against MBUs and overhead due to redundant bits are also less

compared to the existing multi-bit ECCs. RS code is concatenated with Ham-

ming code to correct errors in dynamic random access memory controller in [91].

In order to reduce the complexity of error correction technique only error detec-

tion capability of BCH code or Hamming code is combined with simple parity

based ECC as illustrated in [92]. A low overhead Matrix code (MC) combining

Hamming code and parity code is proposed in [93] to correct multi-bit errors

which shows better performance compared to Reed-Muller [94] code and Ham-

ming code in terms of area, power consumption, critical path delay and EDAC

coverage. Authors used convolutional code with very complex decoding circuit

to mitigate the e�ect of SEU in [95]. Nowadays, di�erent erasure codes [96] are

used for multi-bit error correction in the memory of FPGA. Ebrahimi et.al used

interleaved parity check code along with erasure code to protect con�guration

memory of SRAM based FPGA from MBUs in [97].

DPR along with error correction increases error correction coverage without

increasing error correction time or latency. Use of proper hardware scheduling

algorithm during partial recon�guration helps to enhance system performance.

Few literature is available in recent years where fault correction and detection

approaches are proposed along with hardware scheduling and partial recon�gu-

30

ration. Checkpointing is a very common method that can be used along with

partial recon�guration to reduce the recon�guration time. In [98], authors com-

bine scrubbing with checkpointing and set checkpoint frequency in such away

that tasks will be completed within their deadline. Whereas in [99], con�gu-

ration memory scanning, and fault correction processes are placed according to

the task execution time and its deadline. An online algorithm for proper place-

ment of the checkpoint is proposed by the authors in [100] that reduces the fault

recovery time in a FPGA by storing intermediate states of a program. A new

scheme for fault tolerance and energy saving for �xed priority based real time

embedded system is proposed by the authors in [101]. In [102], authors designed

a download manager to schedule the con�guration process of m number of par-

tially recon�gured regions using n number con�guration ports (where m % n).

The proposal raised in our literature comes from a di�erent aspect where fault

correction priorities of di�erent hardware blocks are calculated from the task pe-

riod and its criticality. Operating system (OS) based applications are involved

with many timing parameters like worst case execution time and deadlines etc.

To meet all of these timing constraints, OS should support applications acquiring

computation resources timely. Hence, in [103] the �ne-grain task control and per-

formance estimation over timing parameters is one of the most important features

for designing a real-time OS (RTOS). The �ne control of the typical system can

be achieved by reducing the time scale which unfortunately increases overhead

because the time scale on the OS depends on the execution of the timer interrupt

service routine (ISR). Large time scale resolution may improve performance but

make the ISR more hectic. Here the issues of our approach are: 1. Fault Detection

and correction can be processed without suspending the system operations. 2.

The proposed con�guration scheduler works form hardware level. In bare metal

platform the approach can be used e�ciently, as well as for embedded processor

platform, even with standalone or OS environment, the proposed con�guration

scheduler may not put any signi�cant overhead to Timer ISR. 3. The proposed

con�guration scheduler block consumes very less resources and power.

31

Chapter 3

Integration of MUCH-XYTER with

DPB using FPGA based GBTx

Emulator

CBM experiment is a part of the FAIR facility where the main challenge is to

measure the particles generated in nuclear collisions with unprecedented preci-

sion and statistics. In order to capture the data generated in each collision, a

highly time synchronized fault tolerant self-triggered electronics is required for

DAQ system that can support high data rate (�TB/s). Basic readout chain for

CBM experiment consists of a FEB with X-Y Time Energy Read-out (XYTER)

ASIC, a radiation hardened high speed optical transceiver board with Gigabit

Transceiver (GBTx) ASIC followed by a FPGA based Data Processing Board

(DPB) and First Level Event Selector Interface Board (FLIB). XYTER ASICs

receive charges from the detector, digitized it and send it to GBTx using Low

Voltage Di�erential Signalling (LVDS) electrical line also known as E-link at 320

Mbps. GBTx after capturing data from multiple XYTER aggregates them and

send to DPB through optical �ber at 4.8 Gbps which in turn sends data to FLIB

using 10 Gbps optical connection. Data having close range of time stamp values

are grouped into several clusters in the FLIB and each clusters are termed as

micoslice. Then each microslice is sent to a single computing node using PCIe

for further analysis. In this chapter, we have integrated MUCH-XYTER ASICs

32

(XYTER ASICs for MUCH detector) with DPB using FPGA prototype of GBTx

ASICs also known as GBTx Emulator. In order to control the readout chain

and monitor the internal registers of di�erent electronic devices remotely, DPB

is interfaced with IPBus protocol over one Gigabit Ethernet.

3.1 Introduction

HEP experiment involves the study of di�erent laws that governs the universe at

the subatomic level. For studying the microsecond old universe di�erent ions like

gold, lead are accelerated and made to collide with a �xed target that will gener-

ate a large number of particle in CBM experiment. In order to support the large

data volume at the output of detector, high speed fault tolerant DAQ system is

needed. DAQ system used in HEP experiment has two parts: One is near the

detector (sometimes known as on the detector) and placed in the harsh radiation

zone and other is usually placed outside the experimental cave i.e in the control

room (green cube for CBM experiment) where radiation level is low. Radiation

tolerance and low power dissipation make the ASICs suitable to work with detec-

tors having high channel density in harsh radiation environment. On the other

hand, electronics which are placed outside the radiation zone i.e in the control

room can use commercial FPGA due to some of its inherent advantages over

ASICs like on-�eld programmability, low cost and large logic resources. There is

some design speci�cations for readout chain of MUCH detector:

� FEE boards should have high channel density, high speed analog to digital

converter and waveform shaping circuit.

� There should be proper electrical and mechanical interconnection between

detectors and FEBs.

� Supports e�cient data aggregation schemes and rate conversion.

� Handle data rate upto 1 Tb/sec.

� Low cost commercial FPGAs having high logic resources with proper error

mitigation techniques will be used in the control room.

33

� FPGA boards should support di�erent high speed interconnections.

� Proper timing synchronization is needed between di�erent boards used in

the readout chain.

� Design should be very compact due to limited space.

� Readout chain can be controlled remotely.

In the readout chain of CBM experiment, XYTER that acts as FEE ASIC will

be placed on the detector and provides high speed waveform sampling, low noise

and high dynamic range ampli�cation, pulse shaping, nanosecond timing, digiti-

zation and can sustain high radiation. GBTx ASIC which is also within the high

radiation zone provides high speed bidirectional fault tolerant data transmission,

precise timing information, control and monitoring features. DPB and FLIB

which are outside the radiation zone are developed using commercially available

Kintex7 FPGA from Xilinx. In order to support high speed data transmission

between the electronic devices, high speed interconnects like optical �ber, Ether-

net and PCIe are used. At the same time data volume in the readout chain can

be reduced by sending trigger signal from the back-end to the front-end ASICs

to capture data for interesting events only. Events that are not coherent with the

trigger conditions will be discarded. In CBM experiment, a prede�ned threshold

voltage is set in the front-end analog channel of FEE ASICs and if the signal

from the detected particles are above the threshold they will be selected. Hence,

in this experiment data rate is higher compared to other HEP experiment with

conventional trigger. Though there is no trigger from the back-end to FEE ASIC

to reduce data volume online computing systems in the back-end removes the

unnecessary data before storing the data for future analysis due to the physical

limitation of the storage memory.

Simpli�ed readout chain for MUCH detector in CBM experiment is shown in

Figure 3.1. The detector systems spread over several square meters of area all

equipped with the MUCH-XYTER ASICs sitting on top of the detector using

specially designed kapton cable to achieve better noise performance. There is

about 50K FEE ASICs that collect data from detectors and send it to the GBTx

using LVDS E-links having length of almost 50 meters on average. There is around

34

M
U
C
H

M
U
C
H

 MUCH-
XYTER

 MUCH-
XYTER

 MUCH-
XYTER

 MUCH-
XYTER

 MUCH-
XYTER

 MUCH-
XYTER

GBTx

GBTx

~50m

320 Mbps

~50K
ASICs

4.8 Gbps

~700m

 GBT
FPGA

 IPBus
Interface

 FLIM
Iterface

 ~ 5-10K
Optical Link

Green
Cube

First Level
 Interface
 Board

 GBT
FPGA

 Fast
Control
 Master

 TS
 Device

 Clock and
Synchronization

 TFC
Network

exClock

PPS ts_
Clock

Clock, Data, Sync and Control
Data

10Gbps

Data Processing Board

1 Gbps Ethernet

Figure 3.1: Schematic diagram of the read out chain for MUCH detector

5-10K optical link between GBTx and DPB having length of 700 meter that helps

to carry the data from the highly radiated zone (within the cave) to moderate

radiation zone. Di�erent modules within the DPB like IPBus interface, GBT-

FPGA core, TS-Slave, TFC network, FLIM interface, clock and synchronization

modules are shown in Figure 3.1, which we are going to discuss in details later in

this chapter. The main contributions in this chapter includes:

� FPGA implementation of GBTx ASICs with e�cient error handling capa-

bility for mitigating soft errors.

� Study and characterization of MUCH-XYTER ASIC.

� Integration of MUCH-XYTER with DPB using GBTx Emulator.

� FPGA implementation of IPbus protocol for controlling and monitoring of

readout chain.

3.2 FPGA based GBTx Emulator

GBTx is a Radhard ASIC developed at CERN [104] to implement multipurpose

high speed optical link of HEP experiment. Optical links are used for data ac-

35

 E-p
 ort

 E-p
 ort

 E-p
 ort

 E-p
 ort

 E-p
 ort

 E-p
 ort

 E-p
 ort

 E-p
 ort

 Phase
Shifter

Reference
 Clock

JTAG I2C Slave I2C Master

Config-
uration

Control
 Logic

C
D
R

S
E
R

SCR/
ENC

DEC
/DS
 CR

Phase
Aligner
 and
Serdes

JTAG-Port I2C Port

GBLD

GBTIA

External Clock SourceClock[7:0]

E-link
 FEE
 AS
 IC

 FEE
 AS
 IC

 FEE
 AS
 IC

GBT
SCA

(80/160/320 Mbps)

Clock

Downlink

Uplink

Figure 3.2: GBTx ASIC internal architecture and interfaces [104]

quisition, sending trigger and timing information to the front end detector and

distribution of slow control information in the network. Single bi-directional op-

tical link carry these information with high reliability in a very harsh radiation

environment. Due to non-ionizing energy loss (NIEL) and total dose, electronics

and optoelectronic components placed near the detector face immense radiation.

To alleviate the e�ect of NIEL and total dose the GBTx ASIC is developed using

130 nm CMOS technology with special layout structure. Electronics and opto-

electronic components that will work with GBTx are custom built and Radhard.

GBTx receives the electrical signals from the FEE ASICs and convert it into opti-

cal signal to transmit long distance outside the harsh radiation zone using robust

channel coding technique. It helps to develop the DPB that accepts data from

GBTx and placed in low radiation zone using commercially available electronics

components.

GBTx ASIC is used along with other components like a laser driver (GBLD)

for back-end communication over optical �ber, a trans-impedance Ampli�er for

the optical receiver (GBTIA) and a slow control adapter ASIC (GBT-SCA) for

controlling di�erent internal registers within the GBTx. GBTx ASIC along with

36

GBLD, GBTIA and GBT-SCA forms the GBT chipset. Internal architecture of

GBTx ASIC and its di�erent interfaces are shown in Figure 3.2. The communi-

cation over optical �ber is asynchronous in nature so a clock and data recovery

(CDR) circuit is used to recover clock from incoming data from GBTIA. Clock

recovery module in the receiver of GBTx is divided into two parts: CDR circuit

and frame aligner (FA) circuit. CDR circuit is again divided into frequency lock-

ing and phase locking sub-block. In the receiver side serial data from DPB is

parallelized, decoded and �nally de-scrambled. During the transmission received

data from the FEE ASIC is scrambled, encoded with ECC and �nally serialized

before giving input to transmitter. A clock manager circuit is used to control

di�erent high and low speed clocks within the GBTx ASIC and a programmable

phase shifter provides eight di�erent clocks with variable phase and frequency.

A crystal oscillator on the ASIC generate reference clock and helps for locking

the CDR circuit during the start-up. Internal register within the ASIC can be

set or reset using I2C slave interface and JTAG interface is used for boundary

scanning. GBLD which is attached with the GBTx ASIC can be con�gured with

I2C interface. Here we have implemented GBTx ASIC prototype on commercially

available Kintex FPGA from Xilinx to test its functionality which is known as

GBTx Emulator.

Main functional blocks within the GBTx emulator is shown in Figure 3.3.

GBTx emulator contains reset modules, clock generator module, multiple GBT

banks, pattern generator and pattern checker module. Each GBT bank contains

Scrambler/Descrambler, RS Encoder/Decoder, Interleaver/De-Interleaver, Gear-

box, Frame aligner and Multigigabit transceiver (MGT). Reset and MGT module

work at 156 MHz and 120 MHz respectively which are given directly from ex-

ternal source whereas scrambler, interleaver and RS-Encoder works at 40 MHz

which is generated from 120 MHz clock using Phase lock loop (PLL).

Scrambler: Every communication channel shows some �ltering e�ect i.e high

frequency component gets more distortion compared to low frequency component.

Equalizer performs reversal of the distortion in the channel and maintain the

constant gain throughout the frequency band in the channel. Equalizer takes the

sample from the received data stream and update the tap gain by taking the

37

Scrambler RS-Encoder Interleaver TxGear-Box
MGT
(Tx)

MGT
(Rx)

Frame
Aligner

RxGear-Box De-
Interleaver

Descrambler RS-Decoder

 Pattern
Generator

 Pattern
Checker

Global
Reset

 Bank
Reset

GBT-Bank

40 MHz 120 MHz
156 MHz

Clock Generator
 Module

Figure 3.3: Internal modules of a GBT-Bank in GBTx Emulator

weighted sum of sampled input. There should not be any statistical correlation

between the aggregated sum at di�erent time instant which is possible only when

the input data stream is completely random. Randomness in the data stream also

helps to detect the clock edge. Hence, the scrambler is used in the communication

system to increase the randomness in the data for avoiding long sequences of '1's

or '0's in the data stream in input signal coming from the FEE ASICs. It has a

latency of one clock cycle but does not add any overhead in the system like the

8b/10b or 7b/8b line coding. Here 84 bit data (80 bit data with four bit for slow

control) is scrambled simultaneously using 21 bit polynomial. These scrambled

data from all four blocks are combined together to produce the 84 bit scrambled

output data.

Encoder/Decoder block: In the Encoder module RS code is used to correct

burst error in data transmission between GBTx emulator and DPB. RS code is

an important class of nonbinary BCH code and it is quite di�erent from other

code in the sense that here base �eld and extension �elds are same [105]. RS code

encode a group of data bits known as symbol instead of individual zeros or ones

which is suitable for dealing with burst error in long distance communication. RS

(n,k) code with t symbols correcting capability has the following properties:

Block length :n � 2
m
� 1 symbols; Message size: k symbols;

Parity check symbols: n � k � 2t; Minimum distance:dmin � 2t � 1;

If each symbol length is s and each symbol there is one bit error then RS code

can correct t bit errors in n � s bits. Hence RS code is not suitable for random

38

error correction. RS code is maximum distance separable code [105] that means

all the code words in the code space are algebraically far away and uniformly

distributed and hence each code word can be properly decoded. RS code is

generated using a generator polynomial G�x� where generator polynomial having
t symbols correction capability can be written using equation 3.1.

G�x� � �x � α��x � α2��x � α3�......................�x � α2t� (3.1)

Here α is the element of galois �eld. Code ward C�x� can be generated using the

equation G�x�I�x� where I�x� is the information bits. As for example genera-

tor polynomial of double error correcting (15,11) RS code can be calculated by

equation (3.2).

G�x� � �x � α��x � α2��x � α3��x � α4�;
G�x� � x4 � �α3

� α
2
� 1�x3 � �α3

� α
2�x2 � α3

x � α
2
� α � 1;

G�x� � x4 � g3x3 � g2x2 � g1x1 � g0;
(3.2)

Now the 2t parity check symbols can be generated using 3.3

P �x� � I�x�.xn�kmodG�x� (3.3)

Figure 3.4 shows the encoder for systematic RS(15,11) code because here gener-

ated redundant symbols will be simply appended at the end of data symbols.The

steps during encoding process are as follows:

1. Switch1 will remain close for �rst k clock cycles so that message symbols

can be shifted into n � k stage shift register.

2. Switch2 is at position 2 for �rst k clock cycle so that message symbol can

be transferred directly to the output register.

3. After transfer of k
th
message to the output Switch1 is opened and Switch2

is moved to position 1.

4. In the remaining n-k clock cycles parity bits are calculated using the data

stored in registers with the help of equation 3.3 and will be shifted to the

output of encoder block.

39

g0 g1 g2 g3

R0 R1 R2 R3

I(x)

C(x)

Switch1

Switch2
2

1

Figure 3.4: Architecture for a systematic RS(15,11) encoder

5. Total n clock cycles are required to complete the encoding process and after

n
th
clock cycle output register will hold original data symbols appended with

generated parity bits.

Now suppose r�x� be the received corrupted data in DPB that can be written

as r�x� � c�x� � e�x� where e�x� represents the error pattern. First step in the

decoding is the syndrome computation. If Si represents i
th
syndrome then it can

be expressed by equation 3.4.

Si � r�αi� � r0 � r1αi
� r2α

2i
�rn�1α

�n�1�i
¾i 1 to 2t (3.4)

As c�αi� is zero Si reduces to equation 3.5. It shows that syndromes depend only

on the error patterns.

Si � e�αi� (3.5)

Now if e�x� has v error at locations at X
j1
, X

j2
,X

jv
. Hence e�x� can be

written using the equation 3.6.

e�X� � Xj1
�X

j2
� �X

jv
(3.6)

We de�ne error locator number as βl � α
jl
. Now from equation 3.4 and equa-

tion 3.6 and putting the error locator number 2t syndrome equations can be

represented by equation 3.7

40

S1 � β1 � β2 � � βv

S2 � �β1�2 � �β2�2 � � �βv�2
S3 � �β1�3 � �β2�3 � � �βv�3

�

S2t � �β1�2t � �β2�2t � � �βv�2t
(3.7)

There are 2t unknowns in 2t equations but they cannot be solved easily as equa-

tions are nonlinear. These nonlinear equations in 3.7 can be solved using either

Berlekamp-Massey algorithm or Euclid's algorithm. Though Euclid's algorithm

is more widely used for its easy implementation but here we have used Berlekamp-

Massey algorithm due to its e�cient hardware implementation. In the next step

one error error locator polynomial (L(x)) is formed from equation 3.7 and roots of

this polynomial is calculated using Chien search algorithm. Finally correct value

of the erroneous symbols can be calculated using Forney algorithm. Di�erent

steps of decoding algorithm is shown in Figure 3.5. Here Xi and Yi represent

error location and magnitude of error respectively. Details of RS decoding algo-

rithm and their hardware implementation can be found in [106].

Syndrome
Calculator

Error locator
Polynomial
(Berlekamp-
Massey)
Algorithm

Error Location

 (Chien Search
 Algorithm)

 Error
Magnitude

 (Forney
Algorithm)

 Error
Correction

S i

L(x) X i
Yi

r(x)
Input

c(x)
Output

Figure 3.5: Di�erent steps of RS decoding algorithm

Interleaver/De-Interleaver: Interleaving is the reordering of the data that

is to be transmitted, so that the consecutive bytes of data are distributed over

a larger sequence of data to reduce the e�ect of burst error. Generally two

types of interleaving strategies (block and convolutional interleaver) are used in

communication system. Here we have used block interleaver. Initially120 bit data

from the encoder is divided into two block of 60 bits of data and then interleaving

operation is done on each 60 bit data using block interleaver. The whole process

increases the code correction capabilities without any clock latency and overhead.

De-interleaver process is used to reorder the data again in the receiver side.

41

Dual Port
 RAM

Control
 Logic

40 Mhz
120 Mhz

Mux 120 to 40 bits

120 bit 40 bit

Dual Port
 RAM

40 Mhz

DeMux 40 to 120 bits

120 bit

address_A address_B address_A address_B

Control
 Logic

Figure 3.6: Functionalities of Gearbox

The gearbox module shown in Figure 3.6 consists of dual port RAM and read-

write controller. In the transmission side TxGear-box breaks down 120 bit frame

into three words of 40 bits width. Write frequency of RAM in TxGear-box is

40 MHz and read frequency is 120MHz. In the receiver side RxGear-box merge

three words of 40 bit wide into 120 bit frame. Here the write frequency is 120

MHz and read frequency is 40 MHz.

Multi-gigabit transceiver (MGT): MGT is a high speed serializer and De-

serializer (SerDes) that operates at the data rate above one gigabit per second.

Like other SerDes MGT also helps to transmit parallel data bits as serial stream

of data and convert serially received data into parallel data. Apart from seri-

alization and deserialization some of the important functions of MGT in FPGA

are elimination of crosstalk and electromagnetic induction, equalization, enhance-

ment of signal to noise ratio by removing inter symbol interference, clock recov-

ery, error detection, frame and phase alignment etc. Xilinx Kintex-7 FPGA uses

two types of transceiver [107] GTX that supports data rate upto 12.5 Gbps and

GTH that supports data rate upto 13.1 Gbps. In the Kintex-7 FPGA there

are sixteen [107] GTX transceivers and in this design one of this GTX is used

as transceiver. Four GTX (also known as GTXE2_CHANNEL) are grouped

together along with one GTXE2_COMMON to form GTX Quad as shown in

Figure 3.7. Each GTXE2_CHANNEL represents one transceiver and internal

architecture of a transceiver is shown in Figure 3.7. Each GTXE2_CHANNEL

consists of one PLL, transmitter and receiver. The PLL in GTXE2_CHANNEL

also known as channel PLL (CPLL) uses ring oscillator in the voltage control

42

oscillator (VCO) and consume low power, small chip area and have wide tunable

frequency range. CPLL provides clock used by both physical media attachment

(PMA) and physical coding sublayer (PCS) blocks and can also be used by both

Tx and Rx data path if both have the same data rate. When the higher clock

speed and rigid jitter performance is required clock can be taken from output of

QPLL in GTXE2_COMMON. It provides better jitter performance because here

VCO is controlled by LC oscillator. Output of QPLL can be shared by multiple

GTXE2_CHANNEL within the same quad.

CPLLCPLL CPLLCPLL

Tx Tx Tx TxRx Rx Rx Rx

QPLL

Transmitter

Receiver

MGTREF Clock

GTXE2_CHANNEL GTXE2_CHANNEL GTXE2_CHANNEL

GTXE2_COMMON

Polarity
 Phase
Adjustment
 FIFO

 8B/10B
Encoder

Tx PIPE
ControlPattern

Generator

Tx GearBox

 Tx
Driver

 Tx
Pre/
Post
Emp
hasis

 Tx
OOB

PISO

FPGA
 Tx
Inter
face

Polarity

Comma
Detect
 and
 Align

 8B/10B
Decoder

Rx Elastic
 Buffer

FPGA
 Rx
Inter
face

SIPO

 Rx
Gear
Box

Rx PIPE
 Control

Rx Status
 Control

RX
EQ

DFE

 RX
OOB

Bu-
 ffer

 Pattern
Checker

Tx PMA Tx PCS

Rx PMA Rx PCS

GTX Quad

Clock Path Data Path

Figure 3.7: Architecture of transceiver of GBTx Emulator

FPGA Tx and Rx interfaces are the gateway for entry and exit of the data

stream between logic block and transceiver. The data to be transmitted using

43

transceiver will be written into the TXDATA port at every rising edge of TXUS-

RCLK2 by properly selecting the internal bus width of the transmitter. In this

design we have used external scrambler for line coding so we have disabled 8B/10B

encoder and decoder within the transceiver. In order to drive the Tx PCS an-

other external clock TXUSRCLK must be provided and frequency of which can

be calculated by the equation 3.8.

FTXUSRCLK �
Line Rate

Internal Data Path Width of Transmitter
; (3.8)

PCS and PMA in the transmitter are running at two di�erent clocks TXUSRCLK

and XCLK respectively having di�erent phase and frequency. During the data

transmission phase and frequency mismatch between these two clocks must be

resolved and for this purpose either Tx bu�er or Tx phase alignment circuit must

be used. Here we have used internal Tx bu�er to eliminate the mismatch between

XCLK and TXUSRCLK. In this design we have used external pattern generator

having both �xed and dynamic value so internal pattern generator is bypassed.

Polarity module helps to prevent accidental swap between data in TXP and TXN

that may occur in high speed data transmission. TX preemphasis circuit is used

to overcome low pass characteristics of the channel by giving higher boost to the

high frequency components compared to lower frequency component.

In the receiver side received data will enter into the equalizer to eliminate

the e�ect of distortion and attenuation introduced in the channel. There are two

types of equalizer are available: power e�cient adaptive mode equalizer named

as low power mode (LPM) equalizer and decision feedback equalizer (DFE). Here

we have used DFE because it provides better compensation for the channel loses

by using closer adjustment of �lter parameter. Filter coe�cient of DFE are set

by the adaptive algorithm. CDR circuit in each GTXE2_CHANNEL is used to

extract clock and data from incoming data stream. As in transmitter side we have

already used TXPOLARITY in the receiver side we have to use RXPOLARITY

before sending data to comma detect and alignment block. Serial data must

be aligned properly at the symbol boundaries before being converted to parallel

data. For this purpose transmitter send a special character known as comma

character and when the receiver receives the comma character it moves comma

44

character to data boundary so that adjacent word can be demarcated properly.

Comma detect and alignment block performs this function in the receiver. Rx

Elastic bu�er is used to remove mismatch between frequency and phase of clock

in RX PMA (XCLK) and RX PCS (RXUSRCLK) during data reception. In this

design we have already used Gear-box externally to the transceiver as shown in

Figure 3.6 and hence, Tx Gear-box and Rx Gear-Box are bypassed. In order to

test the transceiver at di�erent stages loop back facility are available as shown

in Figure 3.7. Green line indicates Near-End PCS loop back, pink line indicates

Far-End PMA loop back and yellow line indicate Far-End PCS loop back.

In the receiver side the frame aligner block aligns the 120 bit frames in a

proper order by using frame header as an index. This frame header is detected

by an e�cient pattern search algorithm. Within GBTx Emulator there is options

to generate three types of frame format as shown in Figure 3.8. The three type

of frames are:

1. GBT frame which has 4 bit header, 4 bit for slow control, 80 bit data and

32 bit for forward error correction.

2. Widebus frame that consists of 4 bit header, 4 bit data for slow control and

112 bit for data. Here no correction is used.

3. 8B/10B frame which contains only 96 bit data and 24 bit redundant data

bits are generated during 8b/10b line coding.

GBT FrameHeader
 (3:0)

 Data
(79:0)

 FEC
(31:0)

Header
 (3:0)

 Data
(111:0)

Widebus Frame

8b/
10b

8b/
10b

8b/
10b

8b/
10b

8b/
10b

8b/
10b

8b/
10b

8b/
10b

8b/
10b

8b/
10b

8b/
10b

8b/
10b

8b/10b Frame

Slow Control
 (3:0)

Slow Control
 (3:0)

Figure 3.8: Di�erent frame format for data transmission over optical link [104]

Any of the frame format can be used as per the designer requirement. As in the

downlink DPB sends di�erent control signal and timing information to MUCH-

XYTER error in this data creates problem and hence, data will be sent using

45

Scrambler

Scrambler

Scrambler

Scrambler

Header<3:0>

 Data
<79:0>

21

21

21

21

11 15

15

11

11

1521

21

21

21

RS-Encoder

RS-Encoder

RS-Encoder

RS-Encoder

RS-Encoder

11

11

15

15

Data from
 FEE ASIC

SLow Control
 (SC)<3:0>

RS-Encoding

H<3:0> D<79:65> D<64:43> D<42:21> D<20:0>SC<83:80>

SCR<20:0>SCR<42:21>SCR<64:43>SCR<83:65>

3:0

76:66

3:0

64:55

65 3:0

54:44

3:0

42:33

433:0 3:0

32:22

3:0

20:11

21 FEC
<3:0>

 SCR
<10:0>

H<3:0>

83:77

Scrambling

Interleaving

Frame <119:0>

Interleaving

<119:0> Frame format

Header
 (H)

4 bit 4 bit 80 bit 32 bit

User Data (D) FEC

 101101110................................1100101)(1010

SC

(1010..1 1 110 00001................1010)

SEU/MBU

De-interleaving

Data (84 bits) + 4 Bit Header

Receiver
 Side

RS-Decoder

De-Scrambler

(1010..1 0 110 11001.......... 0101)

21 21 21 21 21

Figure 3.9: Steps of generation of GBT Frame during data transmission

GBT frame which is protected by (15,11) RS code. On the other hand in the

uplink MUCH-XYTER sends continuous data to DPB and lose of some data

packets may not hamper data analysis in the backend and hence data is sent

using widebus frame format. Details of data �ow for the generation of GBT

frame is shown in Figure 3.9.

Front end ASICs are connected with the GBTx using di�erential electrical

line. Signal amplitude over electrical line is programmable depending on length

of the electrical line, BER and power consumption. GBTx chips are connected

with the FEE ASICs using di�erent topologies i.e one GBTx may be connected

with one FEE or multiple FEEs may be connected with one GBTx that can be

extended upto forty. Each E-link consists of three signal lines: clock, one uplink

and one downlink as shown in Figure 3.2. E-link support variable data rate like

80 Mbps, 160 Mbps and 320 Mbps and the data rate will be chosen based on

the number of E-link par group. Each E-link is terminated with built in 100Ω

termination and if required can be eliminated. In order to eliminate path delay

over E-link phase aligner circuit is attached with each di�erential line.

46

3.3 Muon Chamber X-Y Time Energy Readout

ASIC

The MUCH-XYTER chip is dedicated for signal detection from the GEM based

MUCH detector in the CBM environment. Some of the features provided by

MUCH-XYTER chips are [108]:

� It has 128 analog front end channels for processing the charge pulses from

the GEM detector. It also provides two test channels for testing the func-

tionalities of the ASIC using test pulse.

� It is based on 180 nm CMOS process and uses radhard layout architecture.

� Power dissipation per channel is less than 10 mW.

� It can accepts both positive and negative pulses.

� Digital back-end with data transmission rate 320 Mbps.

Like most of the other front-end ASICs used in HEP experiment internal archi-

tecture of MUCH-XYTER ASIC can be divided into two parts: analog front end

and digital back-end as shown in Figure 3.10. Each of the channel in the analog

front-end consists of charge sensitive ampli�er (CSA), shaping circuit, high speed

discriminator, peak detector, �ash ADC and latch circuit. In the digital back-

end there is a sequencer that will read each of the front end channel sequentially

after digitization. Details architecture of the analog front-end channel is shown

in Figure 3.11. CSA in front of each channel receives the charge pulses directly

from GEM detector for further processing. CSA circuit contains one operational

ampli�er with one resistance (RF), three capacitances (CF1,CF2,CF3) and reset

circuit in feedback. CSA is mainly used to match the output impedance of detec-

tor and input impedance of FEB and it provides small gain to input pulses. By

connecting or disconnecting the switches attached with each feedback capacitor,

gain of CSA can be varied. Output charge from the detector is integrated by

feedback resistance and capacitance and gives voltage waveform at the output of

CSA. Then output of CSA is fed into a polarity selection circuit (PSC) that helps

to work MUCH-XYTER with pulses of both polarity. Output signal of PSC is

47

Figure 3.10: Internal architecture of each channel of MUCH-XYTER

divided into fast and slow path as shown in Figure 3.11. Fast path comprising

of fast shaper, fast comparator and time stamp latch circuit and responsible to

provide timing information of the detected particle. On the other hand slow path

comprising of slow shaper, �ash ADC and digital peak detector and provides

energy of the detected particles. The CR-RC shaper in the fast path has shap-

ing time of around 30 nanosecond. On the other hand slow shaper is based on

CR � �RC�2 �lter architecture and has shaping time of around 80 nanosecond.

As the slow shaper is responsible to provide energy information of the detected

particles noise level should be low in this path.

First comparator has three stages of signal processing. In the �rst stage, it

provides further ampli�cation of output signal of the fast shaper and converts

it into di�erential signal. The second stage contains dynamic comparator with

regenerative feedback. The third stage converts discriminator output signal into

logic signal. Each channel has twelve-bit time-stamp generator that gives the

timing information of the detected particles. Flash ADC based peak detector

which is connected with slow shaper using AC coupling in each of the 128 channel

consists of thirty one comparators and thirty two resistors. It provides energy

information of the detected charge particles. Details of the time stamp generation

mechanism and function of the peak detector can be seen from [17].

48

RF

CSA

CDET

CF1

CF2

CF3

Reset
Circuit

PSC

 o/p
Buffer

300fF

100kohm

4pF

200kohm

500fF2pF

 o/p
Buffer

10pF

10kohm 10kohm

45kohm

300fF
 i/p to
Flash ADC

CR-RC Fast Shaper

CR-(RC)2 Slow Shaper

Threshold
 of DAC

Dynamic Comprator
with Regenerative
 feedback

 Input High
Gain Amplifier

Fast Comparator

Discriminator signal
 to logic signal
 conversion

Time-stamp
 Latch

Figure 3.11: Details architecture of analog front end of MUCH-XYTER

MUCH-XYTER used here is a self triggered ASIC i.e no trigger information

will be transmitted from the back-end computing node to the front-end ASIC and

it will accept the charge from the detector when the voltage level corresponding

to the detected charge is above a threshold. One of the main objectives of MUCH

in CBM experiment is to detect muon particles (µ
�

and µ
�

) generated from the

J©ψ particles which are very rare in the density of other produced subatomic

particles. MUCH in CBM experiment consists of multiple GEM detectors along

with absorber in between the detectors [13] as shown in Figure 3.12 and each of

the GEM detectors has separate readout chain though they have common back-

end computing node. Particles generated from J©ψ particles hit multiple GEM

detectors and when the hitted points are interpolated they form a straight line

as shown in Figure 3.12. In this way muon generated from J©ψ particles are

separated from muon comes from other sources. This acts like trigger in the

experiment to remove the unnecessary data which may consume large memory

space in storage device.

Digital back-end of MUCH-XYTER ASIC is shown in Figure 3.13. Data

from the �ash ADC and corresponding time stamp value from each of the 128

channels will be readout sequentially using arbitrator and sequencer. Multiple

49

Absorber

Readout
 Chain

Readout
 Chain

Readout
 Chain

Readout
 Chain

Readout
 Chain Back End computing

 Nodes

Figure 3.12: MUCH with segregated absorber and multiple GEM detector

serializers are there and will sequentially check the presence of data in each of the

analog channels. Whenever they detect the presence of data, they will read the

data from �fo and encode it using 8b/10b encoder, serialize it and transmit. Data

from ASIC to DPB mainly contain time stamp value, energy information, channel

Id, device address. There are di�erent sixteen bit registers in the MUCH-XYTER

corresponding to each of the front-end analog channel and by setting the values

in the registers, di�erent parameters of CSA, fast and slow shaper and ADC can

be changed. Similarly there are some dedicated registers for digital back-end also

and we can mask any E-link or change di�erent properties of E-link by setting

proper values in the register. Present MUCH-XYTER ASIC prototype has �ve

uplink , one downlink and one clock line as shown in Figure 3.13. Downlink frame

mainly contains di�erent control information, acknowledgment frame, read and

write address and write value. Details of uplink and downlink frame format have

been discussed later in this chapter. Figure 3.14 shows the top view of the FEB

that contains MUCH-XYTER ASIC and its 128 analog front channels, �ve back-

end uplinks, one downlink and one clock line. Registers corresponding to analog

front-end and digital back-end are arranged in row and column format and have

been set for testing the ASICs as shown in Table 3.1 and 3.2. MUCH-XYTER

ASICs [108] user's manual can be consulted for details description of the registers.

Proper command are sent from DPB to set the register values.

50

FIFO
Invert
 &
Parity

Data
Buffer Framer

8B/10B
Encoder

Tran-
smitter

Data
Buffer

Framer
8B/10B
Encoder

Tran-
smitter

Data
Buffer

Framer
8B/10B
Encoder

Tran-
smitter

Ar
bi
tr
to
r
&
se
qu
en
ce
r

Timestamp
 Counter

Front-End
 Register

Register File

Decoder

Diagonestic Logic

Clocking

Back
end
Read
Out
Log
 ic,
Fifo,

Time
Stamp
Lat-
ch

bit_sync
link_status

Serializer

Uplink

Down
 link

Clock

Figure 3.13: Digital back-end of MUCH-XYTER ASIC [108]

Uplink

MUCH-XYTER
 ASIC

Downlink

Input Clock
 Analog
Front End

 Digital
Back End

Figure 3.14: Top view of FEB containing MUCH-XYTER ASIC

51

Table 3.1: MUCH-XYTER Analog Front-end Register Description

Row Column Read/Write Value used during testing
0-129 0,2,4,6,...,60 Read return 8'b00001111
0-129 1,3,5,7,...,61 Read 8'b10000000
0-129 62 Read Discriminator counter
0-129 63 Read & Write 8'b10011000,8'd152
0-129 64 Forbidden Not applicable
0-129 65 Read & Write 8'b11100100, 8'd228
0-129 66 Forbidden Not applicable
0-129 67 Read & Write 8'b00100100, 8'd36
130 0 Read & Write 8'b00011111, 8'd31
130 1 Read& write 8'b00000111, 8'd7
130 2 Read& write 8'b10010011, 8'd147 for -ve polarity

8'b10110011, 8'd179 for+ve polarity
130 3 Read& write 8'b00011111, 8'd31
130 4 Read& write '0' as external pulse is used

130 5 Read& Write 8'b00000000 when 129
th test channel is selected

8'b00000001 when 128
th test channel is selected

130 6 Read& Write 8'b00100000, 8'd31
130 7 Read& write 8'b11011100, 8'110
130 8 Read& Write Typical value:-8'b00011111, 8'd31
130 9 Read& Write Typical value:-8'b00110000, 8'd48
130 10 Read& Write Typical value:8'b10111100, 8'd188
130 11 Read& Write 8'b01100000, 8'd96
130 12 Read & write 8'b00011110, 8'd30.
130 13 Read& Write 8'b00011111, 8'd31
130 14 Read& Write 8'b00011011, 8'd27
130 15 Read& Write 8'b00011011, 8'd27
130 16 Read& Write 8'b01011000, 8'd78

52

3.4 Data Processing Board

Data processing board (DPB) is an intermediate layer between GBTx and FLIB

and are placed in the moderate radiation zone. Hence, it uses COTS FPGA and

perform the following activities:

1. It receives data from GBTx using long distance optical link having the data

rate of 4.8 Gbps. The received data is aggregated, preprocessed and sent

to the FLIB using high speed (10 Gbps) optical link.

2. Timing and fast control (TFC) module in DPB provides reference clock

for the whole read out chain and helps in the transmission of synchronous

commands to the FEE. These are very helpful for synchronization between

FEE and GBTx and implementation of �ow control in the readout chain.

3. Control system attached with the DPB helps to con�gure di�erent registers

that helps in controlling the analog front-end and digital back-end of FEBs.

The control system is attached with the DPB using some standard solutions

like Ethernet with Transmission Control Protocol (TCP) or User Datagram

Protocol (UDP).

Figure 3.15 gives the detailed �rmware architecture of DPB that can be classi�ed

into four broad categories: IPBus module which acts like control system interface,

GBT-FPGA interface for optical connection with GBTx emulator, TS slave inter-

face for timing and fast control and First level interface module (FLIM) interface

for ten gigabit connection between DPB and FLIB. As electrical connection in the

back-end of MUCH-XYTER is unable to carry long distance data in the radiation

zone, GBTx is used as simple interconnecting block between MUCH-XYTER and

DPB. Hence, GBTx will not modify any frame sent by the MUCH-XYTER and it

wraps the data packet within its own frame, convert it into optical signal and send

it to DPB. GBT-FPGA core in DPB opens the wrapper and send it to MUCH-

XYTER Data Readout and Processing block as shown in Figure 3.15. DPB is

implemented as an advance mezzanine card (AMC) and placed into commercially

available Micro Telecommunications Computing Architecture (MicroTCA.4) for

Physics [109]. MicroTCA crate performs the following functions:

53

Table 3.2: MUCH-XYTER Digital Back-end Register Description for 192
th
row

Column Read/Write Value used during testing
1 Read&Write Store the 14 bit time stamp counter value. It is gray encoded
2 Write&Read 14'b00000001111111 for reset

14'b00000000000000 for release of reset
3 Read&Write 14'b00000000000010

4-13 Read&Write Value in each of the 14 bit register from 4 to 12
is14'b00000000000010 and value in register 13 is 4'b1100

14 Read&Write store the time stamp value during the sync command
15 Write Store value of time-stamp counter

16-17 Spare Spare
18 Read & Write 8'b00000010, 8'd2
19 Read& Write 11'b00000000000 Not used as only synchronization is done
20 Read& Write 0 for all 128 channels as only test channels are used.
21 Write&Read Monitor input reference(Not used)
22 Read "010"
23 Write& Read 9'b000000000
24 Read& Write 12'b000000000000
25 Write&Read 10'b00000000000
26 Read&Write store the address of previous register that was accessed
27 Read&Write 11'b000000001010
28 Read&Write Not masked any status register
29 Write&Read Threshold for event miss �ag is set to zero
30 Read&Write 12'b000000000000

31-32 Read&Write Not used here
33 Read Not used here

1. MTCA.4 crate distributes high speed low jitter clock signals between multi-

ple AMC cards placed into it which may be used as system reference clock.

2. MTCA.4 provides one Gbps Ethernet connection to each AMC board in the

crate that helps to implement slow control using TCP/IP or UDP protocol.

3. MTCA.4 crate helps to connect multiple serial high speed links with the

AMC board placed within it using AMC backplane connector or Rear Tran-

sition Module (RTM). AMC boards can carry multiple number of FPGA

Mezzanine Cards (FMC) that help to implement various optical links.

4. It helps in broadcasting signal between multiple AMC boards via eight Mul-

tipoint LVDS (M-LVDS) lines at maximum clock frequency 100 MHz. These

signals are used for exchange of status and control signals between multiple

AMC boards and helps to implement inter AMC board communication.

54

 IPBus
Interface

 IPBus
 Fabric

Global
Device

System Register

IPBus I2C
Controller

IPBus Quick Boot
 Controller

TS Device
 Clock and
Synchronization

tsClock

PPS

 GBT-FPGA
 Interface

MUCH-XYTER Data
 Readout and
 Processing

Status

Command

FLIM Device FLIM Interface

FLIM Core

PCA9547/AD
N4604/Si570

FLASH
 ROM

TS Interface

 Xilinx
 Aurora
Interface

Select

cDAQ

GMII/
SGMII/
1000
BASE-X

exClock

Slow Control Interface

TFC and synchronization
 Interface

GBTx Interface

FLIB Interface

4.8 Gbps
 Optical
Interface

Figure 3.15: DPB Firmware structure

AMC FMC carrier Kintex (AFCK) board shown in Figure 3.16 is used as a

prototype development of DPB. AFCK board contains [110] Xilinx Kintex-7

325T FFG900 FPGA, Module Management Controller (LPC1764FBD100), 2 GB

DDR3 SDRAM with 32-bit interface, 16020 kb BRAMs for high speed parallel

access, SPI Flash, electrically erasable programmable read only memory (EEP-

ROM) with unique MAC ID, mini USB UART and two high pin count (HPC)

slots where each slots can handle maximum four GTx. Clock distribution circuit

within the AFCK is compatible with the White Rabbit protocol (WR) [111] using

CDCM61004RHBT and Si57x chip and jitter cleaner available in it helps to reuse

the recovered clock from receiver as the reference clock of transmitter. Di�erent

clock domains are available within the AFCK board like120 MHz or 40 MHz for

GBT FPGA interface, 125 MHz for 1 Gbps Ethernet used in WR core and 156.25

MHz for 10 Gbps Ethernet.

Though AFCK board is developed to work with MTCA it can work in stand

alone mode also using 12V power supply, JTAG programmer, Ethernet and op-

tical interface. The clock generated from Si570 crystal oscillator can be tuned

precisely either using SPI controlled SN74AVC8T245 [112] or I2C interface. Apart

from the clock generated in the board itself recovered clock from the receiving

55

Figure 3.16: Top view of AFCK board

GTX

DDMTD Phase
 Detector

 PLL
Controller

XO/VCXO

D

D

Q

Q

 RC
Filter

DAC

SPI Jitter
Cleaned
Referene
 Clock

Recovered Clock Link
Providing
Reference
 Clock

I2C connection in case of SI570 XO

Analog control in case of Si571 or another VCXO

Helper PLL

Deglitcher

Deglitcher

 Time
Difference

Figure 3.17: Clock Recovery and jitter cleaning circuit of AFCK

link can also be used to drive GTx as shown in Figure 3.17. Recovered clock

is given input to the Digital Dual Mixer Time di�erences (DDMTD) block that

allows recovery of high quality, jitter-cleaned clock. DDMTD block comprises

of two D Flip-Flop, two deglitching circuit that removes the unwanted glitch, a

time di�erence frequency counter circuit as shown in Figure 3.17. The glitches

may occur due to the presence of phase noise in the timing signals or metasta-

bility arises due to setup or hold time violation in the Flip-Flop [113]. Output

of the time di�erence circuit is given input to the PLL as an error signal that

helps to adjust frequency and phase of recovered clock. The DDMTD module

56

also helps for precise phase alignment necessary for TFC functionalities. I2C

controlled 16� 16 digital cross point switch (ADN4604 [114]) is used for routing

of the clock.

3.4.1 Communication with time and fast control

In the CBM experiment it is very important to provide high quality ultra jitter

cleaned frequency locked clock signal to DPB, GBTx and MUCH-XYTER for

timing synchronization. As MUCH-XYTER is a self triggered ASIC, there may

be a chance of bu�er over�ow in the FEE ASIC due to high particle density in

some part of the detector. In order to avoid bu�er over�ow, data must be trans-

ferred quickly to DPB with low and constant latency. TFC system responsible

for synchronization of full readout chain using externally generated clock pulse is

integrated with DPB which are placed within the MTCA.4 crate and equipped

with AMC. TFC system uses master slave architecture where the FPGA based

TFC master distributes high quality clock (pps pulse) to TFC controller in each

MTCA.4 crate as illustrated in Figure 3.18. DPB within the crate acts as a TFC

slave and TFC controller in each crate distribute the clock among the TFC slaves.

WR core [115] with some modi�cations is implemented on AFCK for precise tim-

ing and synchronization. Like normal WR protocol the steps involved to achieve

sub nanosecond accuracy are precise timing protocol, layer-1 synchronization and

precise phase measurement. TFC master is connected to TFC slave using twisted

pair cable with MLVDS termination in slave side. MLVDS termination provide

45-50% higher di�erential output voltage compared to LVDS termination that

helps in long distance signal transmission. TFC master uses CDCE62005 IC as

precise and low jitter clock source.

For establishing reliable timing synchronization �rst step is to calculate the

link latency along both the directions :master to slave and from slave to master.

In order to calculate latency TFC master sends a message to slave at t1 and

suppose it reaches to TFC slave at t2. Then TFC slave generates a message at t3

and master receives it at t4. Assuming latency along upstream and downstream

is same the one way latency can be calculated using Equation 3.9

δ �
�t4 � t1� � �t3 � t2�

2
(3.9)

57

FPGA based
TFC Master

FEE ASIC

GBTx

MTCA crate

 DPB with
AMC interface
 (Works as
 TFC slaves)

 Signal
Distribution
 inside
 the crate

Signal Distribution
outside the crate

Figure 3.18: TFC system topology

Di�erential pairs in twisted cable have di�erent ratio to reduce crosstalk between

the pairs but it adds unknown skew to the propagation time of signals. Hence, the

assumption that latency in upstream and downstream are same become invalid

and special data center is chosen for TFC link to calculate latency in upstream

and downstream. There is also a small delay of about 4 to 5 nanosecond among

four di�erential twisted cables. Internal architecture of TFC master is shown

in Figure 3.19. Out of the four di�erential cables one pair is used for latency

calculation as mentioned above, one pair is used for transmitting a high-quality

clock and two pairs are used for transmitting fast control message. Unlike to the

WR protocol, here clock is not recovered from the serial data stream so the clock

and data do not have known phase relationship. Here a customized WR soft PLL

approach [116] is implemented that uses clock link for frequency synchronization

and timing link (link for latency calculation) is used for phase locking between

TFC slave and master.

3.4.2 Communication through slow control interface

Communication link between AFCK board with control system is implemented

using IPbus protocol over one Gbps Ethernet link. Using the IPbus protocol,

GTX transceiver in AFCK board can be operated in di�erent modes and val-

58

MLVDS
 8x Tx

MLVDS
 8x Tx

MLVDS
 8x Tx

MLVDS
 8x Tx

CDCE6
 2005

VCO
25M

VCO
20M D

A
C

D
A
C

CLK

LVCMOS

LVCMOS

LVCMOS

LVCMOS

LVCMOS

Data (upstream)

Data (downstream)

Timing (Downstream)

Timing (upstream)

CLK
LVDS

SPI

 CLK
(Input/output)

2
V
5

3
V
3

LPC
CON

 2x4
RJ45
CON

CLOCK

DATA

Figure 3.19: Internal architecture of TFC master prototype [116]

ues and di�erent internal registers can be read out that help in monitoring and

controlling the readout chain.

IPbus is a simple, Internet Protocol (IP) based control protocol [117]. It

describes basic process to control the hardware. Figure 3.20 shows di�erent pro-

tocols of standard OSI model [118] used during the implementation of IPBus

protocol. Out of the seven layers in the OSI model only Transport, Network,

Data Link and Physical Layer are used during the implementation of IPBus pro-

tocol and registers to be read or write will be placed in the application layer.

Physical layer provides electrical and physical properties of the data in the

channel and comprises of PCS, PMA and Physical Medium Dependent (PMD)

sublayer as shown in Figure 3.20. Here, physical layer is connected with the

copper medium using BASE-T PHY [119]. Data Link Layer (DLL) provides

reliable transmission of data packets between two nodes connected by a physical

medium. Media access controller (MAC) within the DLL is responsible to provide

identity of the device in the network and earn the permission to transmit data in

the network. Logical link control (LLC) in DLL helps to detect network protocol

and accordingly prepare the data packets, control frame for synchronization and

error checking. In our design we have used IEEE 802.3 Ethernet protocol in the

DLL. Ethernet has two frame format [120]: Standard and Virtual Local Area

59

Physical Layer

Data-Link Layer

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

1000BASE-T

ARP,RARP

UDP

IPBus Layer

Slave Interface

PCS

PMA

PMD

Logical Link Control
Media Access
 Control
Reconciliation
 Sublayer

GMII Interface

Figure 3.20: Implementation of IPBus protocol using standard OSI model

Preamble
 (7)

 Start of Frame
Delimiter (SFD)
 (1)

Destination
 Address
 (6)

 Source
Address
 (6)

length/
 Type
 (2)

 Data
(0-1500)

 Pad
(0-46)

FCS
 (4)

Figure 3.21: Standard Ethernet Frame Format

Network (VLAN) frame format. In this design we have used standard Ethernet

frame format as shown in Figure 3.21.

Network layer is responsible for forwarding data packets through proper rout-

ing and it manages the tra�c in the network. Every devices in the network has

two addresses: Physical or MAC address and logical address or Internet Protocol

(IP) address. MAC address is assigned by DLL and �xed for a device. IP address

is assigned to a device from a hierarchical system in the network and change

with time and position of the device in the network. Network layer maps from

physical address to logical address and vice versa. It also prepares a routing table

that helps data packet transmission in the network. It breaks a large packet into

smaller packets and helps in �ow control, network layer error control and packet

sequencing. Message delivery in the network layer is not reliable and depends on

the protocol used in this layer. Here we have used IPv4 in this design. It is a con-

nectionless protocol and specially designed for packet switching network. It takes

data from trasport layer and fragmented into packet and encapsulate the data

packets with its own header format. In order to properly deliver a data packet

60

to destination there should be a mechanism for mapping between MAC address

and IP address. The Address Resolution Protocol (ARP) maps IP address to

MAC address and reverse address resolution protocol maps MAC address to IP

address.

Transport layer protocols provide point to point communication between pro-

cesses running on two di�erent systems. Transport layer ensure that the data

should reach the destination in proper sequence and remain intact. At the same

time it ensure the error and �ow control in both source and destination. Com-

monly used transport layer protocols are TCP, UDP, Datagram Congestion Con-

trol Protocol (DCCP), Stream Control Transmission Protocol (SCTP), Resource

Reservation Protocol (RSVP) etc. Here we have used UDP protocol over IPv4

and is referred as UDP/IP. Though TCP is most popular protocol in transport

layer UDP is designed for low latency and loss tolerating communication system.

UDP provides two services to the user: port number that distinguishes di�erent

user requests and checksum to detect the data integrity. Di�erent features of the

UDP protocol are:

� UDP does not used any acknowledgment frame so data packet may be lost.

UDP does not have the facility for checking and resending the lost packets.

But it reduces overhead, bandwidth and latency.

� UDP is simple and suitable for query based communication.

� UDP is connectionless protocol and does not have congestion control mech-

anism.

UDP can also be used for loss less application where other application can man-

ages retransmission of lost packet and rearrange the correctly receive packet.

In our application Ethernet based communication is used only for controlling

purpose and state machine written in application layer control the frame rear-

rangement. At the same time there is other mechanism for data retransmission

and CRC is used to detect erroneous frames. For this reason we have used UDP

protocol instead of TCP protocol in transport layer.

FPGA implementation of IPBus over One Gigabit Ethernet: During

the FPGA implementation of IPBus protocol we have used di�erent algorithms

61

 MAC
ArbitratorRx Buffer Tx Buffer

 Packet
Handler

ICMP/ARP

UDP

Ethernet
 MAC

 GMII
Interface

GbE
PHY

 IPBus
Controller Transa

 ctor
IPbus
Arbitrator

Bus Fabric

Slaves
Interface

 Interface to
 registers in
 the
Application Layer

 Reset
Controller

Figure 3.22: Architecture of IPBus controller and its interfacing with registers

of standard OSI layer. IPbus core has di�erent features like reliable data transfer

with UDP, simple external interfaces and remote bus access. Gigabit media

independent interface (GMII) is used as interface between physical layer (PHY)

and MAC in data link layer. Application layer contains the registers whose value

will be set in the DPB. IPbus controller is implemented under the assumption

that other communicating partner must be an intelligent device like computer.

As all control and management program will run in the computer it will set the

values of the registers via Ethernet. The internal architecture of IPBus controller

and interfacing with registers and external port is shown in Figure 3.22. IPBus

controller consists of MAC arbitrator block, Rx and Tx bu�er, ICMP/ARP, UDP

and arbitrator block. In the data link layer and physical layer Ethernet protocol

is used. But instead of using trimode ethernet MAC available from xilinx we have

used one simple custom MAC that supports data rate of one gigabit per second.

FPGA based UDP/IP stack implementation is shown in Figure 3.23. There are

mainly three clock domains within the UDP/IP stack : IPB_ CLK used as

common clock within the IPbus controller, Tx_CLK used in the transmitter side

and Rx_CLK used in the receiver side.

62

Receiver

 CRC
Checker

Receiver
 Fifo

 CRC
Generator

Transmitter Transmitter
 Fifo

 Packet
Controller

 ARP Table
(Generated From ARP
 Block)

ROM

IPB_CLK

Tx_CLK

Rx_CLK

PHY

Application
 Layer

Figure 3.23: Architecture of FPGA based UDP/IP stack

Receiver Block: There are two �nite state machines (FSM) in the receiver

block. One FSM writes the receive packet in the dual port �fo and second one

reads it and send to the Arbitrator block. Data from Arbitrator block will go

to the slave (FPGA registers) connected through the bus fabric as shown in

Figure 3.22. Received packet will be saved in the receiver �fo in byte wise fashion

and at the same time received packets will be sent to the CRC checker to calculate

the checksum. If the calculated checksum is matched with the data in the CRC

�eld of the received packet then the packet will be retain in the �fo otherwise it

will be deleted from the �fo. After receiving the last byte from the Ethernet PHY,

MAC address veri�cation process starts and if the received MAC address match

with the machine MAC address then received frame will be processed further

otherwise it will be discarded.

Transmitter Block: Similar to the receiver, transmitter also contains two

FSM. One is responsible for reception of packets from Arbitrator block and write

to the dual port RAM and other one receives packets from the dual port RAM

and transmits them via Ethernet PHY. Transmitter will �rst send the preamble

with start of frame (SOF) delimiter as the last nibble. At the same time each

byte will be sent to the CRC generator. Generated checksum will be appended

with the packet. At the end of the packet End of Frame (EOF) will be sent. Here

63

32 bit CRC polynomial is used as CRC generator as given by equation 3.10

G�x� � x32�x26�x23�x22�x16�x12�x11�x10�x8�x7�x5�x4�x2�x�1; (3.10)

Parser

Packet
Builder

Start Command

Read/Write
 Fifo

Read Fifo

Read Control

Write
Control

Parameter Data

Packet
 Data

MUX Tx Data

Arbitration
 Signals

Rx Data
From MAC

Figure 3.24: Internal Architecture of ARP block

ICMP/ARP Block: This block processes packets related to ARP and ICMP

request. ARP request is essential because it resolves IP address related issue and

ICMP packets are only needed during Ping process. Figure 3.24 shows internal

architecture of ARP/ICMP block. Here the parser block works like a �lter because

it processes the packets that have ARP request tag. Then the packet is written

into the read/write �fo and packet builder sends a request for generation of packet

to the arbiter block. After receiving the acknowledgment from arbiter block

packet builder starts to generate packet taking data from read/write �fo and some

�xed header value from read �fo. Data packet generated using IPBus protocol is

shown in Figure 3.25.

Figure 3.25: Packet format generated using IPbus protocol

64

3.5 Integration of DPB with MUCH-XYTER us-

ing GBTx Emulator

In the DPB, the GBT-FPGA interface module as shown in Figure 3.15 helps

to connect AFCK board with GBTx Emulator which in turn is connected with

MUCH-XYTER using di�erential E-link. Communication over the E-link is syn-

chronous because there is separate clock line in the digital back-end of MUCH-

XYTER and clock is not recovered from the data stream as shown in Figure 3.13.

On the other hand communication between GBTx and DPB is asynchronous and

CDR circuit in the transceiver recovered the clock from the data stream itself.

In a GBTx emulator there is multiple GBT banks as discussed in section 3.2.

Figure 3.26 gives simpli�ed architecture for interfacing of MUCH-XYTER with

DPB using single GBT bank. Tx encoder of the MUCH-XYTER sends data at

FIFO_1

FIFO_2

 MUCH
XYTER

DE
LA
 Y
AD
JU
ST
ME
NT

UN
IT

GBT-
FPGA

GBT-
FPGA

 Delay
Controlling
 Unit

FIFO_3

FIFO_4

 MUCH
Interface
 Core

 Slave
Interface

 GBTx Emulator

320
MHz

 160
 MHz

 Clock
Generator

320
MHz

 160
 MHz

5x8=40 bit
@ 40 MHz

 4 bit
@ 40
 MHz

 40
MHz

Data Processing Board

 FSM
Logic

E-Link

Figure 3.26: Interfacing of MUCH-XYTER with DPB using GBTx Emulator

320 Mbps and Rx decoder receives data at 160 Mbps. Received data within the

MUCH-XYTER is decoded by 8B/10B decoder. Though 8B/10B coding add

20% extra overhead, due its simple decoding structure, less resource consump-

tion it is used for line coding instead of scrambling. After decoding data bits are

put into a shift register where decoded data are analyzed in parallel by special

sequence detectors (EOS, SOS, K28.1, K28.5). GBT core is running at 40 MHz

so in the receiver of GBTx Emulator there will be a FIFO (FIFO_1) whose write

frequency is 320 MHz and read frequency is 40 MHz. Similarly, in the transmis-

65

sion side there is also a FIFO (FIFO_2) whose read frequency is 160 MHz and

write frequency 40 MHz. GBT core receives data in 8-bit chunk at 40 MHz clock

and a single MUCH-XYTER can handle �ve uplink. Hence, width of the data

read from FIFO in receive direction is 40 bit. On the other hand GBT core writes

4 bit chunk at 40 MHz clock in FIFO_2. In DPB side write frequency of FIFO_3

is 40 MHz and read frequency is 320 MHz. Similarly, write and read frequency of

FIFO_4 is 160 and 40 MHz respectively as illustrated in Figure 3.26. Clock for

the write operation of FIFO_1 and read operation of FIFO_3 must be in same

phase. Similarly, clock for the read operation of FIFO_2 and write operation of

FIFO_4 must be in the same phase.

In order to maintain the phase of 160 MHz and 320 MHz clock a phase adjust-

ment unit is placed within the MUCH interface core. As one MUCH-XYTER is

connected with �ve uplink there may be path delay between the data transmitted

over the E-link. Automatic delay controller attached with each E-link in GBTx

Emulator is used to eliminate path delay in each E-link and they are controlled by

delay controlling unit in DPB. MUCH-XYTER interface core mainly helps in de-

Figure 3.27: Internal Architecture of MUCH Interface core

coding/encoding of data for communication with MUCH-XYTER, clock manage-

66

ment, transmission of command, phase adjustment etc. as shown in Figure 3.27.

Data and special characters from delay controlling unit enters into the MUCH in-

terface core through DEL_STS_IN signal and SEQ_DET_IN respectively and

decoded by XYTER_RECEIVER. Decoded data will be written into the FIFO

and special characters will be sent to slave interface through SEQ_DET_OUT.

Slave interface module as shown in Figure 3.26 contains IPBus interface mod-

ule that is used to connect with computer through one Gbps Ethernet. Python

script calculates the path delay after getting the decoded sequence and send the

proper delay parameter and command signals to the command transmitter mod-

ule. Command transmitter send the command and delay parameter to XYTER

encoder which transmit it after encoding the data using 8B/10B encoder. Phase

adjustment unit adjust the phase of the clock generated from clock manager using

the signal CLK_DELAY_READY, CLK_DELAY_STROBE, CLK_DELAY

signals. These signals get their values from the python script using IPBus in-

terface in the same way as delay controlling unit get delay parameter.

GBTx encodes the data from the uplink using its own frame format, GBT-

FPGA core in DPB decodes it and send it to delay controlling unit. Hence GBTx

is simply acts like a black box that helps to carry data from FEE to DPB and

DPB to FEE. Frame width from FEE to DPB is 30-bit and there are mainly six

types frames are available for uplink. Uplink frame contains hit data, control re-

sponse (register value, acknowledgments etc) and status data (Timestamp MSBs

(TS_MSB), status bits etc) as shown in Figure 3.28. Hit data frame contains

eight LSBs of time stamp (plus two additional bits overlapping with remaining

time stamp part), seven bit channel address, �ve bit ADC value and one bit

for event missed �ag (EMF). TS_MSB data frame contains six most signi�cant

time stamp bits triplicated and four bit for CRC. Two types of acknowledgment

frame are used here: ACK frame and RDdata_ack. Acknowledge (ACK) frame

contains two bit for acknowledgment status, four bit for sequence number for

identi�cation of acknowledged command, four status bit for diagnostic purpose,

one con�guration parity (CP) bit for detecting SEU in con�guration registers,

six bit for LSB of time stamp and four bit for CRC. Acknowledgment for read

data (RDdata_ack) frame has �fteen bit payload which is required to read back

from a particular register, three bit sequence number and four redundant bit for

67

Hit Data
 Frame

7 bit channel
 address

5 bit adc
 value

0
 Time
Stamp
overlap

Time Stamp

1 2 3 4 5 6 7 8 9 10 11 2112 13 14 15 1716 18 19 20 22 2423

TS_MSB
 Frame

Time StampTime Stamp Time Stamp

(7:0)

(13:8)
(13:8)

(13:8)
4 bit CRC1 1

15 bit register content1 0 1 CRC

1 0 0 ACK
 4 bit
sequence
 number

CP 4 bit status
 value

4 bit CRCTime Stamp

(7:2)

25 26 27 28 29 30

K28.5 comma character after
 8B/10B Encoding

Sync

Ack

RDdata
 _ack

Redundant Data due
 to 8B/10B Coding

Redundant Data due
 to 8B/10B Coding

Redundant Data due
 to 8B/10B Coding

3-bit sequence
 Number

K28.5 comma character after
 8B/10B Encoding

K28.5 comma character after
 8B/10B Encoding

Redundant Data due
 to 8B/10B Coding

EMF

Figure 3.28: Uplink frame format after 8B/10B encoding

CRC. Sync frame contain three consecutive K28.5 comma characters at the rate

of 166 MHz to maintain the link in synchronized mode. If DPB does not get

these characters in periodic interval E-Link may resynchronized. All the above

mentioned frames are 8B/10B encoded and contain extra six redundant bits due

to this line coding as illustrated in Figure 3.28. Apart from the above mentioned

frame there is another frame called Dummy Hit frame. It is used to keep link

synchronized when nothing is to be transmitted and does not contain any ADC

and time stamp value. Frame width from DPB to FEE is 60-bit and there are

Frame_bits
 (59:50)

Frame_bits
 (49:40)

Frame_bits
 (39:30)

Frame_bits
 (29:20)

Frame_bits
 (19:10)

Frame_bits
 (9: 0)

 Comma
Character
 K28.5

Chip Address(7:4)
 Sequence
Number(3:0)

 Request
Type (7:6)
Payload (14:9)

Payload
 (8:1)

Payload(0)
CRC (6:0)

CRC(14:7)

Figure 3.29: Downlink frame format after 8B/10B encoding [108]

mainly four types of frames are available in downlink: No_op, WRaddr contains

address of the register to be accessed, RDdata for reading data from previous

address and Wrdata contains data to be written. Down-link frame structure is

shown in Figure 3.29 and it mainly contains acknowledgment signal, some special

signals like DAQ_start, DAQ_stop, Sync, read and write address and data to be

written. This frame is protected by �fteen bit CRC. The data to be sent using

down-link frame is placed in payload of the frame.

Before data transmission some special characters like K28.1, start of synchro-

nization (SOS) and end of synchronization (EOS) are required to be exchanged

between DPB and FEE for synchronization. FEE after power on reset continu-

68

XYTER Starts to send
 K28.5 Character

DPB sends SOS Character

FEE Receive
 SOS

NO

FEE Responds with SOS

YES

DPB Receives SOS
 from FEE

NO

YES

DPB starts to
send K28.1

DPB adjust Clock
Delayand phase
of the Downlink data

DPB adjust uplink data delay

DPB starts to send EOS EOS response
 from FEE

NO

STOP

START

YES

Figure 3.30: Flowchart for synchronous communication over E-Link

ously sends K28.5 characters in the uplink direction and DPB responds with SOS

characters. MUCH-XYTER after receiving SOS characters responds with SOS

character and DPB then starts to send K28.1 characters. After that FEE will re-

spond by sending K28.1 characters continuously. Based on the response from the

FEEs phase of the data and clocks will be adjusted. Finally, DPB sends EOS to

FEEs and synchronization process will complete. Details of the synchronization

is shown using the �owchart 3.30.

3.6 Results and Performance Analysis

As mentioned there are some speci�cations for designing the readout chain and

we have used certain methods to check whether the design has meet that speci-

�cations. The methods are as follows:

� Provide voltage pulse at the input of each channel of FEE ASICs and then

convert the voltage pulse to charge using input capacitor of preampli�er to

check the functionalities of the ASICs.

69

� Characteristics of di�erent modules in FEE ASIC like shaper, preampli�er,

ADC are tested by varying di�erent register values for analog front end and

digital back end of FEE ASIC.

� Functionalities of GBTx and DPB are tested using low cost FPGA with

high logic resources.

� Di�erent error detection and correction codes are used for error mitigation

in the user data through communication channel.

� UDP based IPbus protocols are used for monitoring of internal register

values of ASICs and FPGA boards.

We have the provisions to choose FPGA from Artix-7, Kintex-7 or Virtex-7 for

implementation of the prototype of DPB and GBTx Emulator. Virtex-7 is quite

costly compared to Kintex-7 but it has much higher logic resources than Kintex-7.

On the other hand Airtex-7 is cheaper than Kintex-7 but has less logic resources

than Kintex-7. Optimizing logic resources and cost Kintex-7 FPGA is chosen to

implement DPB �rmware and GBTx Emulator. DPB �rmware and GBTx Em-

ulator are implemented on AFCK board and Xilinx Kintex-7 evaluation boards

(KC705 from Avnet) respectively. In order to test di�erent characteristics of

MUCH-XYTER ASIC we have interfaced it with DPB using E-link as shown in

Figure 3.31 without GBTx emulator. As mentioned in Table 3.1, we have set dif-

Figure 3.31: Setup for testing MUCH-XYTER using DPB

ferent register values to change di�erent parameters of analog front end. We have

70

given test pulse of frequency 100 Hz from function generator into the test channel

and vary the amplitude from 50 mV to 400 mV. Figure 3.32 shows input/output

characteristics of fast shaper for various feedback capacitances of CSA. There are

three feedback capacitances having values of 20fF, 20fF and 500fF with 80 fF as

o�set capacitances. As we have used 129
th

test channel, 5
th
,4

th
and 3

rd
bit of

register of MUCH-XYTER at the 129
th
column and the 65

th
row are used to se-

lect speci�c feedback capacitance. We have tested for both positive and negative

pulses by selecting polarity in register at the 130
th
column and the 2

nd
row. '0' in

this register indicates negative polarity and '1' in this register indicates positive

polarity. Similarly, we have tested the slow shaper also and input/output charac-

(a) (b)

Figure 3.32: (a) Fast shaper output with positive pulse (b) negative pulse

teristics are plotted in Figure 3.33. It can be observed from Figure 3.32 and 3.33

that for same feedback capacitance, fast shaper saturates quickly compared to

slow shaper. As for example, when the CSA feedback switches are at "001" with

positive test pulse, fast shaper starts to saturate at 200 mV whereas slow shaper

even does not start saturation at 400 mV. Figure 3.34 shows the input/output

characteristics of slow shaper for pulses of both positive and negative polarity

for 600 fF (equivalent to switch position "000") and 80fF (equivalent to switch

position "111"). It is clearly seen from the result that when the value of the

feedback capacitance is low, it saturates quickly (at around 250 mV) compared

to the situation when the feedback capacitance is at highest value (saturation

does not come at 400 mV). We have also measured gain of slow and fast shaper

71

(a) (b)

Figure 3.33: (a) Slow shaper output with positive pulse (b) negative pulse

along with CSA as shown in Table 3.3 for di�erent values of feedback capacitance

in CSA keeping input capacitance 100 fF. As we have mentioned previously slow

shaper provides energy information and fast shaper provides timing information

of the incident particles. As rise time of fast shaper circuit is small output volt-

age is quickly and it helps to properly calculate time of incidence of the charged

particle. On the other hand rise time of slow shaper circuit is less compared to

fast shaper that helps to calculate energy contents of incident particles. Hence

output voltage of slow shaper saturate at high input voltage compared to fast

shaper. Table 3.3 and Figure 3.32, 3.33, 3.34 proves that design criteria for CSA

and shaper circuits are fully satis�ed.

Table 3.3: Gain of slow and fast shaper for di�erent feedback capacitance of CSA

Register Value

Slow shaper
(positive pulse)

(mV/fC)

Slow shaper
(negative pulse)

(mV/fC)

Fast shaper
(positive pulse)

(mV/fC)

Fast shaper
(negative pulse)

(mV/fC)
"000" 21.25 20.1 13.47 15
"001" 11.25 10 32 27.5
"010" 30 27 50 36.67
"011" 31.67 28 31.67 37.33
"100" 10.5 10 23.33 21.33
"101" 11.25 10.2 23.33 22
"110" 37.5 35 50 38
"111" 41 38 51 39

The main objective of implementation of IPbus in this experiment is to re-

motely control and access the FPGA board. To remotely access the FPGA using

72

Figure 3.34: Variation of output voltage of slow shaper with polarity switch and
feedback capacitance of CSA

Table 3.4: Resource Utilization for di�erent module of IPBus on FPGA

Module Name Flip Flop LUT Memory LUT BRAM BUFG
External PHY 37 33 1 Not Used 3
Ethernet_gmii 331 492 Not Used 2 2

Slaves 131 38 Not Used 1 1
IPADDR Block 141 36 Not Used Not Used 1
ARP Block 134 120 Not Used Not Used 1
RARP Block 336 247 25 Not Used 1
UDP Block 2586 1802 66 5 2
IPbus_ctrl 3241 2588 68 17 2
TOP Module 3823 2654 103 20 4

IPbus in the computer side, a socket program is written in python script. In this

program uhal library from CERN for Ipbus v2.0 is used to connect the software

with the FPGA board. At the same time we have written one address table

which will be helpful to access individual register on FPGA board. Resource

utilization for each functional block of the proposed system is given in Table 3.4.

Implemented design consumed total 336 mW power. Resource e�cient IPbus

implementation meets the criteria for remote access of the DAQ system.

In order to test the GBTx emulator along with MUCH-XYTER and DPB

data readout from the E-link FIFO has wrapped within the data generated from

the pattern generator of GBTx transmitter and taken out from the GBT frame

73

Figure 3.35: Timing diagram of the transmitter and receiver signals

in the pattern checker in the receiver of GBTx. Two types of pattern generator

and checkers are used: static that gives �xed data pattern and dynamic that

generates data continuously using a counter. Here, GBTx emulator is tested us-

ing GBT frame format only but it can be tested with widebus or 8B/10B frame

also. Waveform of di�erent signals used in the GBTx Emulator design is shown

in Figure 3.35. Tx_Data_out_sta ,Tx_Data_out_dyn, Rx_Data_out_sta ,

Rx_Data_out_dyn give static and dynamic data pattern at the output of trans-

mitter and receiver respectively. Though we have shown both static and and

dynamic data pattern in the same diagram only one type of pattern generator

and checker will be used during data transmission. Meaning of each signal used

in the waveform shown in Figure 3.35 and their width are illustrated properly in

Table 3.5. We have injected the SBU and MBU error by generating random error

in the input data stream of GBTx emulator using random error generator [121].

The simulation results of BER is shown in the Figure 3.36 with respect to the

noise (Eb/N) which varies from 0 dB to 10 dB. Here we used poison distributed

noise in the channel. Figure 3.36 shows the e�ciency of GBT frame that com-

prises of RS code with interleaver and scrambler and gives the best performance

74

Table 3.5: Description of the signals used in timing diagram

Signal Width Function Use
Fabric_Clk 1 Use to drive di�erent logical blocks Tx and Rx

MGTREF_Clk 1 Use to drive MGT Tx and Rx
PLL_Locked 1 Output of PLL and indicates PLL generate stable clock Tx and Rx

RESET 1 Use to reset the whole system Tx and Rx
BUSY_O 1 High when System enters a process before ready Tx and Rx
DONE_O 1 High to indicate that Tx and Rx are ready Tx and Rx
Scrambler 84 Contains the data of output of scrambler block Tx only
Encoder 120 Contains the data after RS encoding Tx only

Tx_Gearbox_out 40 Contains output of of DPRAM that acts like gearbox Tx only
Tx_Data_Out_sta 1 Contains serialize output of transmitter Tx only

when static pattern generator is used
Tx_Data_Out_dyn 1 Contains serialize output of transmitter Tx only

when dynamic pattern generator is used
Rx_Data_Out_sta 1 Contains serialize output of receiver Rx only

when static pattern generator is used
Rx_Data_Out_dyn 1 Contains serialize output of receiver Rx only

when dynamic pattern generator is used
FRA_ALIGNR_PS 4 Check whether header is matched or not Rx only
FRA_ALIGNR_BC 5 Store the output of counter until header is not matched Rx only

Header_LOCK 1 High when header will be detected Rx only
FRA_ALIGNR_WA 5 store address of RAM where receive data will be written Rx only
RAM_ENABLE 1 High when RAM is Ready to perform Rx only
Write_Data 40 Store 40 bit data which is to be written in RAM Rx only
DECODER 84 Contains the decoded data Rx only

DESCRAMBLER 84 Contains output data of descrambler block Rx only

in presence the noise compared to other schemes (only RS coding or without

RS coding, interleaver and scrambler). This error correction model meets the the

speci�cation regarding the error mitigation in the user data in the communication

channel.

Resource utilization and power consumption for each functional block of GBTX

Emulator, slave interface and MUCH interface core are given in Table 3.6. Power

consumption is estimated using Xilinx Xpower tool and we show the estimated

average logic and signal power for the various models of the proposed design.

75

Figure 3.36: Study of of BER of GBT link using MATLAB simulation

Table 3.6: Resource Utilization and Power consumption by integrated design

Module Name Slice Register Slice LUTs LUT FF BRAM Logic Signal
Power(mW) Power(mW)

RS Encoder 7 951 0 7 0.02 0.01
RS Decoder 135 446 0 119 0.05 0.07
Scrambler 52 53 5 0 0.04 0.00
Descrambler 104 56 5 0 0.01 0.00
Interleaver 44 40 40 0 0.01 0.01

DeInterleaver 201 82 80 0 0.01 0.02
Frame Aligner 115 308 72 0 1.34 1.07
MUCH Interface 620 804 108 4 4.18 1.91
Slave Interface 725 702 110 2 2.29 0.98

3.7 Conclusion
In this chapter we have tested di�erent parameters of MUCH-XYTER ASIC inte-

grated with data processing board using di�erential electrical line. We have also

tested di�erent functionalities of FPGA prototype of GBTx ASIC that is placed

in between FEE ASIC and DPB and helps to carry the detector output from

harsh radiation zone to comparatively less radiation zone. In order to monitor

internal registers of di�erent Electronics devices in the radiation zone IPBus pro-

tocol over custom build one gigabit Ethernet is also implemented on FPGA. In

the next chapter we are going to propose a FPGA based DAQ prototype having

more robust channel coding and e�cient memory management algorithm so that

it can work in di�erent critical application.

76

Chapter 4

An FPGA based High Speed Error

resilient Data Aggregation and

Control System for Radiation

Environment

Due to the dramatic increase of data volume in di�erent critical applications

a robust high speed DAQ system is very much needed that can collect data

from sensors or detectors under harsh radiation environment. To handle such

huge data we have proposed a DAQ prototype using FPGA due to some of its

inherent advantages over ASICs. On the other hand FPGA devices are more

vulnerable to the radiation compared to the ASICs. Hence, a major challenge in

the development of FPGA based DAQ for the radiation environment is to mitigate

the error occurred in the high speed data stream as well as con�guration data

of FPGA devices. CRC as well as orthogonal concatenated code have been used

to mitigate the e�ects of data corruption in the communication channel. At the

same time CRC technique is also used along with scrubbing for error mitigation

in the con�guration memory of FPGA devices. Data from front-end sensors will

reach to the back-end processing nodes through multiple stages that may add

an uncertain amount of delay to the data packets. We have proposed a novel

memory management algorithm that helps to process the data at the back-end

77

computing nodes removing the added uncertain path delays. To the best of our

knowledge, the proposed FPGA-based DAQ prototype utilizing optical link with

channel coding and e�cient memory management modules can be considered as

a �rst of its kind. Performance estimation of the implemented DAQ system is

done based on resource utilization, BER, EDAC e�ciency and robustness against

radiation.

4.1 Introduction

The main objective of a DAQ system is reading of information from one or multi-

ple sensors or detectors for their use in real-time or to be stored for further o�-line

analysis. Function of data processing unit of a sensor system can be divided into

four categories: acquisition, processing, analysis and integration. In most of the

cases development of DAQ covers all of the four functionalities depending on

their application and complexity. As for example single sensor based system dose

not require much more complex integration schemes or processing algorithms but

systems with multiple sensors may use simple processing algorithm along with

complex integration schemes. In a traditional DAQ system FEE ASICs capture

data from the sensors through di�erential copper link, processes it and sends it

to back-end storage device using Ethernet. for further analysis. Traditional DAQ

system face di�erent problems like low data rate [122] and prone to be a�ected

by SBU and MBU in highly radiated area. These traditional DAQ systems are

not suitable to support the high data rate application. Hence, new type of DAQ

architecture is required that can process and transfer large volume of data in very

short time under radiation. Modern DAQ system contains hundreds of powerful

processing unit that are interconnected through high speed buses like optical �ber,

Ethernet and local area network. At the same time powerful software in the back

end computing nodes remove the unnecessary data and stored the receive data

for further analysis. Hence, proper protocol must be de�ned for data transmis-

sion throughout the readout chain to assemble data generated at di�erent events.

Figure 4.1 illustrates how a typical DAQ system interacts with an experiment.

In this chapter, our proposed DAQ systems have been implemented on Xilinx

Kintex-7 FPGA boards that involved board to board high speed communication

78

and PCIe interfacing with a host computer.

DAQ System

Detector
Systems

Raw Analogue
 Signal

 Control
Equipment

 User
(Experimenter)

Database

Data Storage

Machine for main
 Experiment

Information

Conditions

Data to be
 recorded

Detector
 readout
constraints,
description

Machine
 Status Detector/Sensor

 Status

Status Settings

Figure 4.1: General DAQ system and its surroundings

The proposed DAQ system involves three stages of communication. In the �rst

stage data is transferred from FEB to an intermediate board through electrical

line and error in the data stream is detected by CRC. Second stage is responsible

to transmit data from the intermediate board to control room using optical �ber

where error correction is done with the help of orthogonal concatenated code.

Finally the received data enters into the computing nodes through PCIe. Our

proposed orthogonal concatenated code comprising of BCH and Hamming code

reduces BER of data in the communication channel without increasing the com-

plexity of decoding circuit compared to other multi-bit ECCs like RS, BCH and

LDPC etc. In the proposed DAQ system, data transmission latency is also a

critical issue in the high speed data transmission. Bu�er within di�erent logical

blocks and high speed transceiver add uncertain amount of latency or delay in

the transmission of data packets. Bu�ers are mainly used for clock domain cross-

ing (CDC) and phase alignment. Here we have proposed a method to bypass

some of the internal bu�ers in the transceiver with proper external circuit that

performs the functionalities of CDC and phase alignment. The proposed method

not only stabilize the data transmission latency but also reduces it compared to

the situation when internal bu�ers are used.

79

As we are using FPGA to develop the full DAQ system there is a high proba-

bility that the design implemented on FPGA devices itself may be a�ected by the

radiation. Hence proper steps should be taken to mitigate the errors in the con�g-

uration memory of FPGA devices due to radiation. We have used data scrubbing

with CRC for error mitigation in the con�guration memory. In this technique,

the con�guration �le of the FPGA is stored in a separate Radhard �ash memory

that is also placed on the same electronic device that contains FPGA. During

runtime con�guration memory of FPGA is read back in a periodic interval and

if error is detected in the con�guration �le using CRC, stored con�guration �le

will be downloaded into the con�guration memory.

In large DAQ systems sensors are spreaded over large area along with their

FEBs. Hence, data from di�erent sensors will reach to the back-end computing

node with di�erent path delay. These di�erence in path delay arises due to

di�erent cable delay as well as uncertain delays added by di�erent FPGA boards.

As readout chain handles real-time data, there is no scope to store the data on

FPGA boards for long time before sending it to the computer. Hence, proper

memory management is required to aggregate the data coming from di�erent

FEBs at a particular time instant before being forwarded to the host computer.

In this chapter our contributions are:

� E�cient implementation of a novel error correction code using orthogonal

concatenated code for error resilient high speed communication.

� Special design measures have been adopted to optimize the transmission

latency of the hardware.

� FPGA implementation of e�cient memory management algorithm to ag-

gregate the data before processing through the back-end computing nodes.

4.2 System Design for High Speed DAQ

The high speed DAQ system works in the radiation environment should have dif-

ferent features like fault resiliency to enhance system lifetime, e�cient data aggre-

gation capability, precise time synchronization and contain high speed reusable

80

data processing modules.The radiation level that creates error in the con�gura-

tion memory FPGA is only available naturally in the upper layer of atmosphere

and to test DAQ using that radiation level designer has to take the help of space

craft or space shuttle. The luminosity [123] of cosmic ray on the earth crust is

unable to damage a FPGA devices in short run. Another option to get such

high level of radiation is within the accelerator where di�erent HEP experiment

is carried out like LHC at CERN [11]. Hence, here we have proposed a simpli-

�ed hierarchical readout chain for data aggregation and control system of HEP

experiment as shown in Figure 4.2. At the �rst stage of the proposed DAQ,

FEE FEE FEE FEE FEE FEE

Back End Processing and Control unit

 Optical
Interface
Board (OIB)

 Optical
Interface
Board (OIB)

Computer Interface
 Module(CIM)

Within the
Radiation
 Zone

Outside the
 Radiation
 Zone

Sensor

Second Stage

 First
Stage

Third Stage

Sensor Sensor Sensor

Figure 4.2: Simpli�ed read out chain for multistage data acquisition system

FEE will receive data from the sensors and send it to a data aggregator board

named as Optical Interface Board (OIB) through the E-link. Multiple OIBs,

placed in the second stage of the hierarchical DAQ send data to Computer In-

terface Modules (CIM) through the optical �ber which in turn send data to the

back-end computing nodes through PCIe. Here computing nodes work as server

and CIMs are PCIe plugin cards. First and the second stage of hierarchical DAQ

network i.e FEE with detector system and OIB are within the radiation zone,

and CIM with computing nodes are outside the radiation zone and placed within

the control room. Instead of Radhard FPGA from Xilinx or Altera we are using

COTS FPGA to develop the DAQ system that can work in the radiation zone.

A simpli�ed readout chain using single OIB, CIM and multiple FEBs is shown

81

in Figure 4.3. Functionalities of each module of the readout chain are described

below.

 Delay
Controller

Scrambler Interl-
eaver

DeInte-
 rlever Descar-

 mbler

Trans-
ceiver

Trans-
ceiver

DeInterle-
ver Block

Descar-
 mbler

 FIFO
 and
 FIFO
 contr-
 oller

DMA with
 PCIe
Interface

Scrambler
Interl-
eaver

8 Lane
 PCIe

FEB-1

FEB-2
 Delay
Controller

 Delay
Controller

Gear
 Box

Gear
 Box

Gear
 Box

Gear
 Box

Optical Interface Board

Computer Interface Module

 Memory
 Manage-
 ment
 Module

 Orthogonal
Concatenate
 Encoder

 Orthogonal
Concatenate
 Encoder

 Orthogonal
Concatenate
 Decoder

 Orthogonal
Concatenate
 Decoder

 Sensor
Systems

Frame Ali-
 gner &
 Pattern
 Search

 FIFO
 and
 FIFO
 contr-
 oller

Frame Ali-
 gner &
 Pattern
 Search

Read out
Controll-
 er
 Block

FEB-N

Registers
 Slave
Interface

Ethernet
 MAC

IPBus
CTRL

IPBus
 PHY

Control
 Inter
 face

Figure 4.3: FPGA based readout chain prototype having single OIB and CIM

4.2.1 Optical Interface Board (OIB)

Frontend Electronics Board: Main functions of the FEBs are the digitiza-

tion of the received analog signal from the detectors, packaging and sending it

to OIB. Like to the front end ASICs describe in the chapter 3, here also each

FEB sends three informations to the backend: voltage of the detected particles,

time at which the particles are detected by sensors and position of the sensors.

Front end ASICs have mainly two parts one is analog front end and other is

digital backend. Interfacing of analog front end and digital backend is analog to

digital converter (ADC) and digital backend contains di�erent interface protocol

to communicate with other devices in the system. Here, we have implemented

only FPGA prototype of digital backend of the XYTER ASICs described in the

chapter 3 and connected it with a hit generator that generates the data pack-

ets randomly containing energy and timing information as shown in Figure 4.4.

Figure 4.4 describes the internal architecture of FPGA-based FEB emulator. Hit

generator in the FEB emulator generates the data in the same way as the out-

put of the ADC generates data in the XYTER ASIC described in chapter 3 for

particle hits in the detector and appends the channel number randomly with the

generated hit data. FEB emulator sends data at 320 Mbps and receives data at

82

Serial_in

Sync_signal Serial_out

Time stamp generator

 Trans-
mission
 Unit

 Ack_
command
 Decoder

 ACK_hit

 Hit
Gener-
 ator

CLK

Rst_n

 Deseri-
 alizer

 Link
ManagerStatus

Data_
 out

K28_5_wrong

 Data_out (9:0)

clk_ena10

[Data,ready,
 parity bit]

configuration information

Comm-
 and
Decoder

CLK

[Reg_rw_address,
write, read,
 data]

[Data, Rdy]

Data_Front
end register

 Data_Monitor

Regis-
 ter
 File

Data write to the
Frontend register

CLK

Rst_n

Clk_ena10

clk_ena5

clk_ena3

 Clock
Generator

Figure 4.4: Internal architecture of FPGA based FEB emulator

160 Mbps similar to the backend of XYTER ASIC. Digital backend of XYTER

emulator and OIB are placed in one FPGA board and CIM with PCIe interface

are placed in another board. For the synchronization between FEB emulator and

OIB same E-link protocol is used as explained in chapter 3.

Clock generator in FEB emulator regenerates the clock signal after receiving

clock from OIB. The command and control signals received from optical module

enter directly into deserializer block as shown in Figure 4.4. After deserialization

data is sent to the link manager block in FEB emulator where a state machine

checks whether the characters K28.5, K28.1, SOS, EOS (used for synchronization

in E-link) are received in proper sequence or not and then, received characters

are sent to command decoder block. Command decoder block decodes the data

using 8b/10b decoder and compares them with the values stored in the register

�le and sends an acknowledgment signal to the transmission unit in the FEB

emulator. After receiving the positive acknowledgment signal, transmission unit

reads the value of special characters from the register �le, serializes them and

sends them to OIB. After completion of synchronization between FEB and OIB,

command decoder and transmission unit send an acknowledgment signal to the

hit generator which generates the data along with the time-stamp value. After

83

synchronization, a counter generates the time stamp information and append it

with the data generated from the hit generator module.

 FEB
Emulator

 Optical
Interface

 Data
Aggregator
 (Uplink)

 Data
Distributer
(Downlink)

 Delay
ControllerRegister

 Delay
ControllerRegister

 Delay
Controller

Register

 Delay
Controller

Register

 Register
Controller

 Register
Controller Clock

Generator

Figure 4.5: Interfacing of FEB emulator with optical module in OIB

Optical module receives data from FEB emulator at 320 Mbps through the

E-Links and transmits them to CIM at 5 Gbps. As optical module is running

at 52 MHz, there is a register in each E-Link between FEB emulator and optical

module that temporarily stores the received data from FEB. Write frequency of

register is 320 MHz and read frequency is 52 MHz hence width of each register

is six bit. Similarly in the downlink FEB receives data at 160 Mbps and hence

width of the register in the downlink is three bits as shown in Figure 4.5. As

data width for optical communication is 40 bit (explained later) one FEB can

supports maximum six uplinks and thirteen downlinks. Here we have used six

uplinks and one downlink. Single optical module receives data from multiple E-

Links and the data aggregator block in OIB reads data from multiple registers

at the same time and send the aggregated data to optical module in the uplink

direction. In the downlink, data from optical module will be written into data

distributer block which writes data into multiple registers in the downlink as

illustrated in Figure 4.5. Data transmission between FEBs and optical module

takes place through multiple E-links with di�erent path delays that can create

the problem during data aggregation process. Here FEB emulators and optical

84

module are within the same board so E-link means data channel through FPGA

fabric. The path delay between di�erent channels will be more prominent when

FEB emulator will be placed in di�erent FPGA boards outside the OIB and will

be connected with OIB through electrical lines. In order to adjust such path

delays, an automatic delay controller is attached with each E-Link. During the

synchronization process (as described in chapter 3) the delay controller calculates

the delay of each link and automatically updates its o�set value through downlink

frame from CIM. Optical �ber transmits data serially and hence �xed delays are

added to the data from each E-link after data aggregator block. Automatic delay

controller does not deal with the �xed delay added after the data aggregator

block. Data from aggregator block enters into the scrambler in OIB as shown in

Figure 4.3.

Similar to GBT-FPGA core described in chapter 3 here also scrambler is used

for clock and data recovery and equalization. Unlike to 21 bit scrambler in GBTx

here we have used 10-bit scrambler after dividing input 40-bit data into four

bit data chunk. Here X
9
� X

4
� 1 is used as the scrambler polynomial. The

scrambled data from four blocks are concatenated together to produce the 40-bit

scrambled data at the output. Descrambler in the receiver side performs just the

complimentary function.

Concatenated Code: The error correcting capability and decoding complexity

of a concatenated code depends on the choice of the component code. As we are

dealing with high speed communication, minimization of latency during encoding

and decoding should also be considered for the selection of component code. We

have used single bit error correcting BCH code (15,11) and (7,4) Hamming code as

the component codes. RS coding which is used in GBTx in chapter 3 is suitable for

burst error correction but for random error correction binary version of RS coding

i.e BCH coding is more e�cient. Figure 4.6 shows that BER performance of BCH

coding is far better compared to RS coding against random error using binary

phase shift keying (BPSK) as illustrated in [124]. In communication channel the

probability of occurrence of random error is more compared to burst error. Even if

burst error occurs the interleaver after encoder will distribute it as random error.

For this reason BCH code is chosen as one of the component code of concatenated

85

Figure 4.6: BER performance of BCH and RS code against random error using
BPSK modulation [124]

code instead of RS code. 40-bit input data along with four-bit header enters into

BCH Coding

Hamming
Coding

FEC Data
generated
due to BCH
code

FEC Data
generated
due to
Hamming
Code

Figure 4.7: Concatenate code using Hamming and BCH code

the encoder and arrange in a 4�11 matrix as shown in Figure 4.7 by the pink

colored square box. BCH is a binary ECC, that encodes the data along the row

using the polynomial g�X� � X4
�X � 1 and generates 16 redundant bits (4�4)

as indicated by red colored square blocks in Figure 4.7. Simultaneously (7,4)

Hamming code runs along each column and generate 33 redundant bits (3�11)

as shown by the green colored blocks. Hence, the input of the encoder block is

44-bit data, and output is 93-bit (44+33+16) data. If more than one bit error

occurs along any row or column of the matrix (as shown by `X' along the �rst row

and fourth and sixth column of the matrix in Figure 4.7) single bit ECC can not

rectify them. These erroneous bits can be corrected using row decoding (BCH

coding) and column decoding (Hamming coding) in parallel. It increases error

correction capability and reduces BER of the data stream. Errors in the third

row and second row will be corrected using row decoding and errors in the �rst

86

row will be �xed using column decoding as shown in Figure 4.7. Steps involve in

decoding of orthogonal concatenated code are as follows:

� Compute the syndrome along the row and column using BCH and Hamming

code respectively.

� Determine the error locater polynomial from the syndrome calculated using

BCH decoder.

� Find the error location by solving error locater polynomial and syndrome

of hamming decoder.

� Invert the bit where error is detected.

Interleaver: Interleaver is used to eliminate the e�ect of burst errors in the

communication channel as we have discussed for GBTx in chapter 3. Here, we

have used matrix helical scan interleaver [125] in our proposed design in stead of

block interleaver where the frame header is always within a single block. Hence

if header is a�ected by burst error, there will be a problem in frame detection

and synchronization. In helical interleaver, header bits are uniformly scattered

throughout the frame. During interleaving data is �lled in the matrix along

Before Interleaving After Interleaving

Figure 4.8: Helical Interleaving Process

the row and then read the matrix content in the helical fashion as shown in

Figure 4.8. Helical fashion means data is selected along the diagonal of the

matrix in such a way that row and column index both increases during the data

readout. Array step size is the parameter that calculates the slope of the diagonal

i.e the amount by which row index increases as the column index increases by

one. Figure 4.8 shows functionalities of a helical interleaver where small square

blocks with the same color come out sequentially from the interleaver block.

Deinterleaver performs just inverse function at the receiver.

87

Gearbox and MGT: Gearbox breaks down 96-bit frame into six words of 16-

bits width. Data writes in the gearbox at a frequency of 52 MHz and read at

312 MHz, which is also used to drive the MGT. This block is used to synchronize

the data rate between MGT and the other parts of the design. In order to

minimize the latency we have not used any dual port RAM to break frame into

words. MGT works like a high speed serializer/deserializer block. Details of the

transceiver architecture and its functionalities are explained in chapter 3. CDR

circuit is used to recover the clock that helps in data transmission. CDR in each

channel consists of edge sampler, data sampler, De-MUX, phase interpolator (PI)

and PLL. This type of CDR circuit uses phase rotator architecture [126]. Data

from decision feedback equalizer(DFE) is captured simultaneously by both edge

and data sampler. The output of data sampler and edge sampler is fed to the CDR

state machine which calculates phase of the incoming data stream and controls the

phase interpolator (PI) of both edge and data sampler. Finally phase of the edge

sampler is locked at the transition region while the phase of the data sampler will

be locked at the middle of data eye. Details internal architecture of CDR circuit

is shown in Figure 4.9. The transmitter within the MGT converts the parallel

 Liner
Equalizer

 Decision
Feedback
Equalizer

 Edge
Sampler

CDR
FSM

PI

DEMUX

 Data
Sampler

DEMUX

PI

Recovered
 Data

Recovered
 Clock

Received
 data

Data Path

Clock Path

Figure 4.9: Internal architecture of CDR circuit in the Xilinx Transceiver

data to serial data and sends it to SFP module, that converts electrical signal to

optical signal, modulates the signal and sends optical signal to the communication

channel. The receiver simply converts the serial data to parallel data.

4.2.1.1 Frame Aligner and Pattern Search Block

As communication between OIB and CIM is asynchronous in nature proper

header detection using frame aligner and pattern search block plays an important

role. Header detection is used for frame synchronization. The frame is synchro-

88

Pattern Search
and

Right Shifter
IF "1010"

Generate
Write Address

TRUE

FALSE

Write
16-bit dataBit Slip Counter

Deserializer

(a) (b)
52 MHz

Deserializer
Righter
Shifter

 State machine
(pattern search)

Demux

16 bits

16bits

16 bits

312 MHz

312MHz

312MHz

96 bits

bit slip

command

HeaderFrame

1 0 0 1
1 1 0 1 0 1 0....

Figure 4.10: (a)Algorithm for Frame Aligner and Pattern Search (b) Data �ow
diagrams of the Frame Aligner and Pattern Search block

nized using an e�cient pattern search algorithm as shown in Figure 4.10(a). Gen-

erated frame consists of three �elds: Header (4-bit width), Data (40-bit width)

and Forward Error Correction(49-bit width). The header �eld contains �1010�.

The frame aligner and pattern search block consists of two subblocks: Pattern

search and Right shifter block. Right shifter block continuously shifts one bit

of data in the received frame on the right side from MSB and send it to pat-

tern search block to check whether the header �eld is detected or not. After the

header is detected properly, one locked status signal is generated to trigger the

data capturing process as illustrated in Figure 4.10(b).

4.2.2 Computer Interface Module(CIM)

CIM receives data from multiple OIBs at 5 Gbps data rate and transmits data

to the back-end computing node through PCIe. Scrambler/Descrambler, En-

coder/Decoder, Gearbox, Frame Aligner and pattern search block perform the

same function as in OIB. Functionalities of other blocks like DMA with PCIe

interface, Memory management module, and IPbus interface are described in the

following subsection:

Data Transfer to Host PC through PCIe: PCIe is a high speed computer

expansion bus standard and it is developed to replace older PCI and PCI-X bus

standard. In true sense PCIe is more like a network where each card is connected

to a switch using a dedicated set wires. It provides dual simplex point to point

serial connection, scalable link width (x1, x2, x4, x8, x16) and link speed (2.5,5,8

89

GT/s). PCIe uses packet based transaction protocol, data integrity using CRC

and advanced power management mechanism.

The protocol used for data transmission in PCIe mainly involves generation

and processing of basic data packets known as transaction layer packets (TLP),

power management, �ow control, error detection, status checking, physical link

interface initialization, serialization and deserialization etc. Transaction layer,

data link layer and physical layers are involve in the generation and processing

of TLP. There are mainly three types of data packets are used during the data

transmission: Write packet, read request packet and completion packet. Data

Payload along with header comes from the software layer. Structure of a memory

write request packet and completion packets having width 128 bits are shown in

Figure 4.11 (a) and (b) respectively. Here we have not shown the read packet

separately because it is same as write packet without data �eld. Functionalities

of each �eld used in di�erent data packets are illustrated in Table 4.1.

Table 4.1: Function of di�erent �elds in data packet used for PCIe communication

Field Function
R Reserved
Fmt 2 for write and completion packet. 2 for read request packet
Type 0 for write and read request. 0x0A for completion packet
TD 0 indicates that transaction layer does not add any CRC i.e ECRC �eld will be zero

Length 0x001 indicates that width of each data word (DW) is 32 bit

Requester
ID

Used in read request and completion packet. It identi�es the
devices where to send the response

Tag Used to match the completion packet with corresponding read request packet

BE
First BE �eld is used to enable �rst DW and last BE �eld indicates whether

last and �rst DW are same or not
Address Give the address of the device with which host device will communicate

Byte Count Used only for completion packet and indicate number of packets left for transmission

Lower
Address

Used only for completion packet and store seven bit LSB of the address
�eld from which �rst byte of TLP will be read

Completion
ID Used only in completion packet and give id of the sender

status Used only in completion packet and indicates whether completion is successful or not

Data link layer (DLL) adds sequence number and link CRC (LCRC) with

TLP. Apart from this, DLL also issue a special packets called data link layer

packets (DLLP) for maintaining reliable transmission, �ow control and power

management. Finally physical layers add start and stop bits with the TLP and

form the data packet as shown in Figure 4.11(c). In PCIe, two types of interrupt

are used: legacy INTx and message signaled interrupt (MSI). Here we have used

MSI because this type of interrupt does not require any completion TLP.

90

R Fmt

31 30:29

Type

 28:24

R

 23

TC

22:20

R

19:16

TD

15

EP

14

Attr R Length

13:12 11:10 9:0

Request ID
31:16

Tag

15:8

Last BE
7:4

First BE
3:0

Address
31:2

R
1:0

Data
31:0

R Fmt

31 30:29

Type

 28:24

R
 23

TC
22:20

R
19:16

TD
15

EP

14

Attr R Length

13:12 11:10 9:0

Request ID
31:16

Tag
15:8

Lower Address

11:0

R
6:0

Data
31:0

7

Completer ID
31:16

Status
15:13

BCM
12

Byte Count

(a) (b)

Data PayloadHeader ECRCSequence LCRCStart Stop

(c)

Figure 4.11: (a) Frame format for write request TLP (b) Frame format for com-
pletion TLP (c) Structure of TLP packet after passing through physical layer

Details architecture of data transfer between CIM and host computer using

PCIe and DMA controller is shown in Figure 4.12. In this communication initially

PCIe core transfers the data between memory space in host computer and packet

bu�er in the PCIe controller and then DMA engine transfer data between packet

bu�er and registers of the user logic. IRQ and TLP encoding/decoding module

shown in Figure 4.12 process interrupt and TLP data packets respectively. DMA

Req Bu�er holds read request packet during non-posted data transaction until

completion packet is received. DMA engine contains DMA registers, scheduler,

recorder bu�er, packet splitter, descriptor engine and descriptor engine update

module as shown in Figure 4.12. Reorder bu�er rearranges the receive data pack-

ets read from the packet bu�er before sending them to user logic and scheduler

sets the priority among the channels in a round robin fashion. Descriptor within

the DMA specify the source, destination and length of DMA transfer. Each chan-

nel has its own DMA descriptor list. Starting address in the descriptor's list is

speci�ed by the driver during the link initialization.

Before starting of communication, PCIe will check whether any interrupt is

pending or not in IRQ module. If no interrupt is pending PCIe controller checks

whether any data packet is present in the Rx and Tx packet bu�er and if present

they should be processed �rst to avoid any deadlock. Data packets in Rx packet

bu�er can be of three types as discussed previously. Completion packets indicate

that previously user logic issued any read request and corresponding read data

is present in the Rx packet bu�er. For a single read request multiple completion

packets may be present but all of them have same tag. Now to transfer data

91

DMA Engine

Transc-
 eivers

 7 series
 FPGAs
Integrated
Block for
 PCIe

Rx Block
 RAM

Tx Block
 RAM

 AXI4
stream

 AXI4
stream

 Host
Informa-
 tion

Physical
Layer
Control
 and
Status

Clock
 &
Reset

PCIe Core

PCIe Controller

Schedular

Reorder
 Buffer

Packet
 Split

Descriptor
 Engine

Descrptor
 Update
 Engine

 DMA
Register

 DMA
Register

System
 to
 Card

 Card
 to
System

 TLP
Decoder

Packet
Buffer
 RxCompletion

 Monitor

Packet
Buffer
 Tx

 TLP
Encoder

DMA Req
 Buffer

 IRQ
Module

Credit Info

 Rx
Arbi
trat
 or

 Tx
Arbi
trat
 or

dma_rd
 _rq

 rd_
complete

Figure 4.12: Data transfer between PC and CIM through DMA and PCIe

from Rx packet bu�er to user logic DMA engine opens the corresponding system

to card (S2C) channel and the DMA driver will create descriptor based on the

input data size and address. Then DMA engine reads the data from packet bu�er

based on the descriptor, reorder them if multiple completion packets present for

a single read request and write them to destination address. After completion of

data transfer DMA issue an interrupt to the host. When the packet in the bu�er

corresponds to memory read packet, DMA engine opens corresponding card to

system (C2S) channel. Based on the descriptor information DMA engine reads

the data from the address mentioned in memory read packet and sends it to Tx

packet bu�er. Then TLP encoder wrap it into a completion packet and sends

to host. Finally, if the packet is write request DMA engine reads the data and

write it into corresponding user memory space. Similarly, in Tx packet bu�er

any of the three types of data packets may present. Completion packets in Tx

92

packet bu�er indicates host issued a read request and corresponding completion

packet will be wrapped by TLP encoder and sent to host. Write request and read

packets in Tx packet bu�er will be encoded by TLP encoder and send to host for

proper action.

If there is any pending interrupt from any user logic then PCIe controller

switches to the corresponding subroutine and data transfer between that logic

and host PC through DMA engine starts. When there is no pending interrupt

or data packets in the bu�er, FPGA sends read request TLP to host computer

mentioning start address, number of data bytes to be read and a request identi�er

tag to initiate the read operation. Sometimes multiple read requests can be issued

at a time from the FPGA side and then DMA engine will reorder the received

data stored in the packet bu�er based on the requester ID in the completion

packet and their increasing address. Details of the data transfer between CIM

and host computer through DMA and PCIe is shown by a �ow chart 4.13.

START

Interrupt
 Pending

No

Packets present
in Rx Buffer

Yes

Write Request

Read Request

No

Yes

No

No

Completion
 Packet

DMA transfer data
in completion packet
from packet buffer
to user memory

No

DMA write data of
host from packet
buffer to user memory

Yes

DMA sends address
 to user logic

User logic read data
from that address
space and send
 it to Tx buffer

Yes

Packets present
 in Tx buffer

Yes

Completion
 Packet

PCIe controller send the
packet to TLP encoder to
send it to the host

Yes

Write Request

PCIe controller send
the write request TLP

No

Yes

Read Request
PCIe controller send
the read request TLP

Request packet with the
Tag will be put into DMA
 Req Buffer

Yes PCIe Controller switches
to the corresponding
 subroutine

Data transfer between
the logic and PC through
 DMA starts

FPGA issues read
request TLP to host PC

Figure 4.13: Flow chart for data transfer between host PC and CIM through
PCIe and DMA

93

Memory Management Module (MMM): Data generated from di�erent

FEBs with similar time-stamp may reach to the CIM at di�erent time instant

due to various path delays, and uncertain amount of latency added by the dif-

ferent memory elements. The objective of the MMM in CIM is to aggregate

the data generated with similar time-stamp from the hit generators in di�erent

FEBs before sending them to computing nodes. Some of the data may reach

to the CIM at the expected arrival time, some of them may reach after a cer-

tain delay from the expected arrival time, and some of them may reach before

expected time. Hence, data need to be held up in the CIM till the maximum

expected time of uncertainty. Suppose t be the maximum time of uncertainty

in the experiment. Hence, before sending data to the computing node through

PCIe, data can be held for maximum t time units in the CIM otherwise, there

will be a backlog or queue of the data. In order to handle these kinds of online

data streams, a novel algorithm is proposed that mainly comprise of a memory

write module (algorithm 1), read module (algorithm 3) and fragment eliminator

module (algorithm 2). The prerequisites of the proposed algorithm are:

� Data entering into MMM should be progressive in nature. Progressive

means that data average should be either ascending or descending.

� Repetition within the data set is more desired which makes this algorithm

more e�cient.

For the implementation, we have taken two types of memory space: static mem-

ory space (sta_mem) and dynamic memory space (dyn_mem) as shown in Fig-

ure 4.14. Each address space in the static memory is �xed for the data generated

in a particular time slot (described later) whereas in dynamic memory address

spaces are not �xed for a particular time slot.

First data in a particular time slot will be stored in static memory and other

data in the same time slot will be stored in dynamic memory as per the vacant

space available. The number of memory pair (one static and its corresponding

dynamic memory will form a memory pair) required will be determined by the

maximum time of uncertainty in the system and frequency of the hit generator

in the FEB (resolution of the sensor). Suppose, �rst a bits (from MSB) of a data

94

Time Comparator
(First level Discrimination)

Data From Serdes

 (Present Time) mod 2
(b-k-l)

 Static
Memory
Space1

Dynamic
 Memory
 Space1

 Static
Memory
Space_n

Dynamic
 Memory
 Space_n

 Static
Memory
Space_i

Dynamic
 Memory
 Space_i

Fragment
Eliminator
 Block

Address list array_i

Address list array_n

Address list array1

Read Out
 Logic

Async_FIFO

wr_en_Fifo
Data Fullwr_clk

rd_clk

rd_en_
 Fifo

empty

data Direct Memory
Access Controller
 (DMA)

Packet
 Buffer

Xilinx PCIe
 Interface
 Core

control
 State
 Mach-
 ine

X8 gen2
 PCIe
Link Bus

Data
Last address
in dy_mem
for a time slot

 Next
Address
in dyn_
 mem

Status
 bit

Data
 Next
Address

Status
 bit

Second level Discrimination

Memory Pair

Figure 4.14: Implementation of memory management module with PCIe interface

packet coming from the FEBs represent energy information and last b bits repre-

sent time information where data packet width is a � b. If f be the global clock

frequency which drives the full readout chain, F be the frequency of hit genera-

tor then data coming into the CIM within 1

F
unit time will not be discriminated.

This 1

F
unit time represents one time slot. If k be the number of bits within b

from LSB such that it satis�es the condition 1

f
�2

k
�

1

F
then only (b�k) bits are

required to determine the number and size of static and dynamic memory. If l be

the number of bits that satis�es the condition 1

f
�2

l
� t then number of addresses

within the static and dynamic memory will be 2
l
and 2

l�1
respectively and the

95

number of static and dynamic memory will be �2b�l�k
� 1�. One extra memory

pair is required to eliminate the vacant space created during the data writing in

static memory using the fragment eliminator module before the reading operation

starts. In our case a � b � 30 bit and b is 12 bit as mentioned previously, f is

100 MHz, F is 20 MHz, and t is 1 us (i.e maximum time of uncertainty is 1 us).

Here, values of k and l are 3 and 7 respectively. Hence, the number of static and

dynamic memory i.e memory pair is �ve. Each static memory has 128 address

locations and each dynamic memory has 256 address locations. Maximum time

of uncertainty is 1 us means each memory pair holds data of 1 us. Here out of

the �ve memory pair, read operation will be performed on one pair, fragment

elimination operation will be performed on another memory pair and the other

three will be used for writing present, past, and future data respectively. Hence

the number of static and corresponding dynamic memory used for writing will

depend on the delay that MMM can a�ord before transmitting data through the

PCIe.

Corresponding to each static memory there is one dynamic memory. Each

address location in static memory corresponds to 1

F
unit time slot and contains

one data �eld, next address �eld in dynamic memory (nxt_add), last address in

dynamic memory corresponding to this time slot (last_add) and status bit to

indicate the presence of data in this time slot as shown in Figure 4.14 . Dynamic

memory stores the data if multiple data present in the same time slot corre-

sponding to an address space in staatic memory. Each address space in dynamic

memory contains one data �eld, next address of the data presents in the same

time slot (next_dyn_add) and the status bit (syn_status) to indicate whether

data is present in that address of dynamic memory as shown in Figure 4.14.

Each address space in static memory is �xed for a time slot equivalent to 1

F
unit

time but in dynamic memory there is no separate demarcation of the address

corresponding to a time slot.

At the very �rst step after receiving a data packet from serdes block, static

memory number is calculated at �rst level discriminator and second level dis-

criminator decides address space (time slot) within the static memory as shown

in Figure 4.14. Suppose for a data packet u be the static memory and v be the

address space within the u
th
static memory. If the status �ag of v

th
time slot is

96

zero the data will be written into v
th
time slot and status �ag of v

th
time slot will

be raised to one.

Algorithm 1 Algorithm for Memory writing

1: Variable:=X,Y,Z,U,P;

2: Read the data from online data stream;

3: Compare time information within the data at the �rst level discriminator;

4: sta_mem_num=(present time) mod 5; i=sta_mem_num;

5: if (wr_en(sta_mem_num)='1') then

6: X= Address within the static memory;

7: if (sta_memi(X).status='0') then

8: sta_memi(X).data=data; sta_memi(X).status='1';

9: sta_memi(X).next_add=Null; sta_memi(X).last_add=X;

10: end if ;

11: if ((sta_memi(X).status='1')&(sta_memi(X).next_add)=Null) then

12: Z=Lowest available address in dyn_mem;

13: sta_memi(X).next_add=Z; sta_memi(X).last_add=Z;

14: dyn_memi(Z).data=data; dyn_memi(Z).status='1';

15: end if ;

16: if (sta_memi(X).status='1')&(stat_memi(X).next_addjNull) then

17: P=sta_memi(X).last_add;

18: U=Lowest address available in dyn_memi;

19: dyn_memi(U).data=data; dyn_memi(U).status='1';

20: dyn_memi(P).next_add=U; dyn_memi(U).next_add=Null;

21: end if ;

22: end if ;

When the status �ag of v
th
time slot is one and next_add �eld of v

th
time slot

is NULL then data will be written into the vacant space available in dyn_mem

and address of this vacant space will be written into the next_add and last_add

�eld of v
th
static memory. If next_add �eld of v

th
time slot is not NULL then

data will be written into the vacant space available into the dynamic memory and

address of available vacant space in dynamic memory will be written in last_add

97

Algorithm 2 Algorithm for Fragment Eliminator

1: Variable:=j,k;
2: Scan status of all �ve static memory;
3: stat_mem_num= Static memory for which wr_en and rd_en signals are

zero; i=stat_mem_num;
4: Frag_elmin_en(stat_mem_num)=1;k=1;
5: for j=1, j<=maximum size of (sta_mem(stat_mem_num)), j++) do
6: if (sta_memi(j).status=1) then
7: array_listi[k]=j; k=k+1;
8: end if
9: end for

10: Frag_elmin_en(stat_mem_num)=0; rd_en(stat_mem_num)=1;

�eld of v
th

static memory. There is a high probability that a number of time

slot in the static memory remain vacant which fragments a static memory into

multiple regions. Details of the write logic is explained in the algorithm 1.

During the writing in the static memory some vacant spaces may be created

within the static memory that divide total memory space into multiple fragments.

In order to make the readout logic more e�cient these vacant spaces should be

removed which is termed as fragment elimination technique as described by the

algorithm 2. After t units of time from starting of writing in a static memory,

read and write enable signal of that static memory will be low, then fragment

elimination block start scanning for the registers in the static memory whose

status bits are high. It prepares a new address array that contains the address

of the time slot having the valid data in static memory. Fragment eliminator

module may be the bottleneck for the entire operation as at every clock cycle

only one address in the static memory can be scanned. In order to avoid this

bottleneck multiple fragment elimination operations run in parallel on a static

memory to create a array list removing the vacant space from the static memory.

The details of the readout logic is explained in algorithm 3. Readout logic module

fetches the address from the array generated by fragment eliminator block and

reads the data from the main memory at �rst. If the logic block �nds that the

next_add �eld corresponding to a time slot is NULL, then it will read the data

from static memory and put it into async_�fo. On the other hand if the next_add

98

�eld corresponding to a time slot is not NULL then logic block �rst read data

from static memory and then continue to read data in dynamic memory from the

address written in the next_add �eld. This process will continue until logic reach

to the address written in last_add �eld in static memory. After the read process

is over, the control block changes the status of this memory bank to write enable.

After writing to n
th
static memory writing logic will write data in the �rst static

memory again (i.e static memories are connected in circular fashion).

Algorithm 3 Algorithm for Read from memory pair

1: Input:=array_list1,array_list2,array_list3,array_list4,array_list5

2: Output:=D_out;

3: Variable:=Y,j,W;

4: Scan status of all �ve static memory;

5: if ((wr_en_Fifo='1') && (Full='0')&& (rd_en_Fifo='0')) then

6: if (rd_en(stat_mem_num)='1') then

7: Y=Maximum size of (array_list(stat_mem_num));

i=stat_mem_num;

8: for (j=1, j<=Y, j++) do

9: if (sta_memi(j).next_add=NULL) then

10: D_out=sta_memi(j).data;

11: end if

12: if (sta_memi(j).next_addjNULL) then

13: D_out=sta_memi(j).data; W=sta_memi(j).next_add;

14: while (Wjsta_memi(j).last_add) do

15: D_out=dyn_memi(W).data;W=dyn_memi(W).next_add;

16: end while

17: end if

18: end for

19: rd_en(stat_mem_num)='0';wr_en(stat_mem_num)=1;

20: end if ;

21: end if ;

99

During the hardware implementation of static and dynamic memory space

block RAM is used. Integration of MMM with PCIe module is shown in Fig-

ure 4.14 and detailed data transfer mechanism from Async_�fo to PC using

PCIe and DMA is already explained previously in this chapter. Data is written

into the FIFO at a frequency of 52 MHz at which di�erent logic blocks are run-

ning on CIM and data will be read from the FIFO at a frequency of 125 MHz at

which PCIe core is running.

4.2.3 Overview of the data �ow

Figure 4.15 shows the complete mechanism for the frame generation and the error

correction procedure. As we have mentioned previously OIB can read six bits at

a clock cycle from a single E-link, maximum six E-links can be attached to one

OIB. Thirty-six bits data along with four dummy bits will be scrambled using

four 10 bit scramblers. Then 40-bit data along with 4-bit header is mapped into

the concatenated coding block. After encoding, 49 bits FEC �eld is appended

to the 44-bit data and the 93-bit data frame is generated from the encoding

block. To use the available clock frequency and the data width within the Xilinx

Transceiver, three zero bits are appended, and 96-bit data is generated. From

the encoding block, the data will enter into the helical interleaver block. Within

this block, only 44 data bits will be interleaved. Then 96-bit data will be written

into the gearbox at 52 MHz clock frequency, and the same data is read at 312

MHz clock frequency with 16-bit data width. Hence, the writing speed (52�96

= 4.992 Gbps) and reading speed (16�312 = 4.992 Gbps) is same. Now during

data transfer from CIM to host PC, Gen2 eight lane PCIe is used. As output

of deserializer in CIM is 40 bit payload size for TLP should be two data width

(DW) or 64 bit. On a Gen2 link with x8 lanes, this raw link layer runs at 5 Gbps

� (8/10) x 8 = 32 Gbps. For 64 bit or 8 byte payload header size is 16 byte

and 6 bytes are used as data link layer overhead. Hence to transmit 8 byte data

packet size for transmission over PCIe is 30 byte. Then the link rate is limited

to 32 Gbps � (8/30) = 8.533 Gbps. As within 64 bit payload valid data is only

40 bit original data transfer rate is 8.533 Gbps � (40/64) = 5.33 Gbps. Hence,

our proposed DAQ system can support data rate� 5Gbps.

100

Scrambler

Scrambler

Scrambler

Scrambler

BCH Encoder

Interleaving

Header<3:0>

Data

40

10

10

10

10

10

10

10

10

11 15

15

15

93

<95:0>

BCH and
Hamming
Encoding

 Frame format

SEU/MBU

Receiver
 Side

Hamming
Encoder

BCH Encoder

BCH Encoder

BCH Encoder

11

11

15

11

Hamming
Encoder

Hamming
Encoder

"000"

4

4

4

7

96

7

7

H<3:0> D<39:30> D<29:20> D<19:10> D<9:0>

H<3:0>

SCR<39:33> FEC<47:44>

SCR<39:30> SCR<29:20> SCR<19:10> SCR<9:0>

SCR<3:0>

FEC<93:91>

Scrambling

Interleaving

Frame<0>Frame<95>

Concatenated Code

11 4 11 4 11 4

H<3:0>

4 4 3

"000"

"000"

Frame<51> Frame<35>

33 bit

Header
 (H)

 User Data
 (D)

4 bit 40 bit 16 bit

"000"

3 bit

(1010..1 1 110 00001................ 1010)

De-interleaving

4 Bit Header + 40 bit data

BCH and Hamming Decoder

(1010..1 0 110 11001.......... 0101)

10 1010 10

De-Scrambler

10

MMM

Payload Header

(0-1024x32) bits (96-128) bits

Payload HeaderSequence LCRC

32 bit64 bit

Payload HeaderSequence LCRCStart Stop

8 bit 8 bit

 FEB
 Emulator
 with Hit
Geneartor

 Frame Format for
optical communication

 Frame Format for
PCIe communication

 FEC Bit
(BCH Code)

 FEC Bit
(Hamming Code)

Figure 4.15: Data �ow through optical �ber and PCIe

IPBus protocol over one gigabit Ethernet is used for monitoring of di�erent

registers in OIB and CIM. At the same time it also helps for sending the com-

mand and special characters to the FEB from the host computer that helps in

the synchronization between FEB and optical module and reset process of FEB

emulator. Details implementation of IPBus protocol over one gigabit ethernet

is described in chapter 3. During the synchronization between FEB and optical

module, the special characters send by the FEB will reach to the CIM through the

optical �ber and from there to the host computer through Ethernet connected

with CIM. A Python script written in the host computer checks the status of

the received characters and calculate the delays and send the responses to FEB

through the downlink. The registers whose values need to be monitored will be

connected to the slave interface as illustrated in Figure 4.3. In this design PCIe

interface is used for data transfer and Ethernet interface is used for controlling

and internal monitoring. As data transfer is high-speed process and control and

monitoring is the low-speed process we have separated these two processes.

101

4.3 Latency Optimization

Latency is the time di�erence between input of data or signal to the system and

output from the system. In general, large electronics system consists of di�erent

memory elements for phase and delay alignment that may add uncertain amount

of latency during data processing. In order to �x the latency these memory

elements need to be bypassed but their functionalities should be implemented

by proper external circuit. Fifo within the transceiver are used to align phase

and frequency of clock in PCS and PMA domain. We have discussed internal

architecture of MGT in details in chapter 3 and here we have shown di�erent clock

domains and �fo to align their phase and frequency in the transmitter and receiver

in Figure 4.16. Tx data path contains two parallel clock domains: PMA parallel

clock domain (XCLK) and PCS parallel clock domain (TXUSRCLK) as shown in

Figure 4.16 (a). During the data transmission from PMA to parallel input serial

output (PISO) frequency and phase of XCLK and TXUSRCLK must match. Tx

Phase adjust �fo perform this function and when it will be bypassed external

Tx phase aligner circuit must be used as shown in Figure 4.16 (a). Similarly,

in the receiver side also XCLK and RXUSRCLK must be matched in phase and

frequency before data transmission from serial in parallel out (SIPO) register to

PCS and elastic bu�er perform this function. In Figure 4.16(b), external Rx

phase and delay alignment circuit is used to reduce the latency bypassing the

elastic bu�er.

Phase alignment in transceiver must be performed in the following situation:

� After every power on reset in the transceiver.

� Resetting or powering up QPLL and CPLL in the transceiver.

� When line rate in Tx or Rx is changed.

� When phase and frequency of transceiver's reference clock is changed.

Kintex FPGA uses multi-lane transceiver [127] in which multiple circuit lanes

in parallel are used to carry data to optical transducer. In such high density

transmitter re-timer circuit is used to eliminate the e�ect of coupling from ad-

jacent lanes. In multi-lane GTx transceiver Tx and Rx bu�er bypass and phase

alignment must be performed manually and phase aligner circuit is used master

102

Clock Data
Recovery
 circuit
 (CDR)

 Rx
Equaliza-
 tion

SIPO Polarity
Comma
 detect
and Align

8B/10B
Decoder

Rx Elastic
 Buffer

FPGA
Gear
box

FPGA
 Rx
Interface

RX PIPE
and Status
Control

PMA parallel
 Clock
 Domain
 (XCLK)

PCS Parallel
 Clock
(RXUSRCLK)

From Tx Parallel data
(Used during Near end PCS
 Loopback)

Rx Serial
 Data

Manual
 Rx
Phase
Aligner
Block

RXPHALIGNDONE

RXDLYSRESETDONE

RXDLYSRESET

CDR_LOCK

Stable
Clock

Reset
From
Receiver
 FSM

Transceiver(GTx)

Tx Pree-
mphasis

PISO Polarity
Phase
Adjust
 FIFO

 8B/10B
Encoder

FPGA TX
Interface

 Manual
Tx_Phase
Aligner
Block

TXDLYSRESET

TXDLYSRESETDONE

TXPHINIT

TXPHINITDONE

TXPHALIGN

TXPHALIGNDONE

TXDLYEN

Tx Serial Clock PMA Parallel Clock (XCLK) PCS Parallel Clock (TXUSRCLK)

(a)

(b)

PCSPMA

RXPHALIGN

RXDLYEN

Figure 4.16: (a)Di�erent clock domains in the transmitter (b) Di�erent clock
domains and bu�er bypass strategy in receiver

slave architecture. Within the multi-lane architecture the lane which uses TX-

OUTCLK acts like master and the lanes which use TXUSRCLK generated from

TXOUTCLK will act like slaves. The parameters of GTX transceiver [107] to be

set during latency optimization is briefed in Table 4.2.

A �ow diagram in Figure 4.17 gives details of manual phase alignment in the

transmitter after bypassing the Tx phase adjust �fo. In the receiver also same

steps are followed for phase and delay alignment bypassing the elastic bu�er. For

Rx phase alignment name of the signal used in the Figure 4.17 will remain same,

only 'Tx' will be replaced by 'Rx' like TXPHDLYSRESET will be replaced by

RXDLYSRESET. Another major modi�cation for Rx phase alignment data �ow

is that there is no such RXPHINIT and RXPHINITDONE signal in receiver cor-

responding to TXPHINIT and TXPHINITDONE signal in transmitter. Meaning

of the signals used in Figure 4.16 and Figure 4.17 are explained in Table 4.3.

103

Table 4.2: Parameters of the MGT to be set during latency optimization

Transmitter side Receiver side
parameter value parameter value

TXBUF_EN False RXBUF_EN False

TX_XCLK_SEL
Selects source of

XCLK
RX_XCLK_SEL

Selects source of
XCLK

TXOUTCLKSEL

011 or 100 to
select reference

clock RXOUTCLKSEL

010 to select recovered
clock as source of
RXOUTCLK

PCS_RSVD_ATTR[1] 0 PCS_RSVD_ATTR[2] 0
RXSLIDEMODE PCS

RXDDIEN 1

TXPHDLYRESET= Low
TXDLYBYPASS = Low

TXPHALIGNEN = High

TXDLYSRESET=
 High

TXDLYSRESET
DONE= High

Yes TXDLYSRESET= Low

TXPHINIT=High
for Master lane

Rising Edge of
TXPHINITDONE
 is detected

No

Yes TXPHINIT = Low
for Master Lane

TXPHALIGN = High
 for Master Lane

Rising Edge of
TXPHALIGNDONE
 is detected

No

TXPHALIGN = Low
 for Master Lane

Yes

No

 TXDLYEN = High
TXPHALIGNDONE = Low
 for Master Lane

Rising Edge of
TXPHALIGNDONE
 is detected

No

YesTXDLYEN = Low
for Master Lane

TXPHINIT= High
for all slave lanes

Rising Edge of
TXPHINITDONE
 is detected

YesTXPHINIT = Low
for all slave lanes

TXPHALIGN = High
 for all slave lanes

Rising Edge of
TXPHALIGNDONE
 is detected

No

TXPHALIGN = Low
 for all slave lanes

Yes

No

Continue to keep TXDLYEN =High
to adjust variation in TXUSR clock
due to temperature and voltage

Figure 4.17: Flow diagram for manual phase alignment in the transmitter after
bypassing the phase adjust FIFO

Table 4.3: Details of the signals used during latency optimization

TX/ RX PHDLYRESET Tx or Rx phase alignment hard reset
TX/ RX DLYBYPASS '0' when Tx or Rx delay alignment circuit will be used

'1' when delay alignment circuit is bypassed
TX/RX PHALIGN Tx or Rx phase alignment circuit

TX/ RX DLYSRESET Tx or Rx delay alignment soft reset
TX/ RX DLYSRESETDONE indicates that Tx or Rx delay alignment soft reset complete

TXPHINIT Tx Phase alignment initialization
TXPHINITDONE Indicates Tx Phase alignment initialization complete

TX/ RX PHALIGNDONE Indicates Tx or Rx phase alignment complete
TX/ RX DLYEN Tx or Rx delay alignment circuit enable in manual mode

104

4.4 Error Mitigation in FPGA devices

Here we have used scrubbing to mitigate the error in the con�guration memory

of FPGA. There are two types of scrubbing: blind scrubbing where externally

stored golden copy periodically writes into the con�guration memory and read-

back scrubbing in which con�guration memory will be refreshed by golden copy

only if error is detected in the readback �le. Here we have used readback scrub-

bing where 32 bit CRC is used to detect errors in the readback con�guration �le.

Hardware implementation of the proposed error mitigation scheme for con�gu-

ration memory of FPGA is shown in Figure 4.18. The design is partitioned into

two parts: static area and con�guration area. The static area consists of Master

Internal Con�guration Access Port (ICAP) controller, Slave interface controller,

Error detection block, Hardware ICAP (HWICAP) and ICAP interface. Con-

�guration area consists of the application which is to be con�gured during the

runtime. Golden copy or original bit �le of the application is stored separately

in a Radhard secondary memory on FPGA device. After power is on, bit �le

will be downloaded from the Radhard secondary memory into the con�guration

memory through ICAP port. Slave interface block gets the controlling informa-

tion from the master. Master sends multiple informations namely ICAP_start,

bit addresses, and bit length. ICAP acknowledges master using ICAP_done port

while dynamic con�guration process is done. The HWICAP is an interface to the

ICAP. During the bit �le downloading TXFIFO inside the HWICAP reads con-

�guration data from the Block RAM and sends it to the con�guration memory.

Similarly, during read back RXFIFO reads con�guration data from con�guration

memory and sends it to the block RAM inside error detection block.

Slave interface controller is an interface between the proposed ICAP block

and master. Custom ICAP controller uses Advanced eXtensible Interface (AXI)

to communicate with the proposed ICAP block. Master ICAP Controller is used

to move bit �les from Radhard secondary memory to the ICAP controller. In this

design custom ICAP controller is used as the master. ICAP controller generates

the trigger in a certain time interval (user de�ned) and after getting the trigger

ICAP starts to read the data from the con�guration memory and sends it to

error detection block. If an error is detected error detection block generates a

105

Configuration Area

Static Area

ICAP Interface

Slave Interface

TX FIFO RX FIFOHWICAP

 Slave
Interface
Controller

Writing Path

Reading Path

Secondary
 Memory
(Radhard) Error Detection Block

Master
(Custom
 ICAP
Controller)

Figure 4.18: Hardware implementation of the proposed EDAC model

signal to the ICAP controller and the ICAP controller downloads the golden copy

from the Radhard secondary memory. The �ow diagram shown in Figure 4.19

describes the steps involved in the error mitigation in the con�guration memory

using readback scrubbing.

Generate .bit
 file for the
application

Generate .mcs
file for storing
in flash memory

Program the
configuration
file with the
 .mcs file

Freeze Design
step by stopping
 the clock

Initiate Readback
capture command
sequence via ICAP
 port

Store the readback
data in .rbdk file

Multiply dat in .rbdk
 with the CRC
 polynomial

Compare redundate
 data with store
 redundate data

Multiply dat in .bit
 with the CRC
polynomial and store
redundate data in BRAM

 Error
detected

No

Yes

Figure 4.19: Flow diagram for error mitigation using readback scrubbing

4.5 Results and Performance Analysis

The full prototype has been implemented on Xilinx Kintex-7 FPGA board. Exter-

nal clock to drive MGT has been taken from jitter cleaned clock source (CDCE62-

005EVM of TI). Here maximum data rate of 5 Gbps has been achieved. Full test

setup of our proposed DAQ system is shown in Figure 4.20. Error correction

capability of the proposed orthogonal concatenated code is compared with that

of other coding schemes like single and double bit error correcting BCH code,

concatenated code consisting of BCH and Hamming code. All the above men-

106

Figure 4.20: System for testing the proposed DAQ system using KC705 and
external clock generator

tioned coding schemes are unidirectional in nature whereas our proposed orthog-

onal concatenated code corrects error along both row and column of a matrix

in parallel. At the same time coding e�ciency of double bit error correcting

BCH code is 38/90 = 42.2% and for proposed orthogonal concatenated code is

44/93 = 43.01%. Hence, we are not losing much in terms of coding e�ciency.

Figure 4.21 shows the BER performance of the proposed error correcting scheme

is better compared to the other schemes. Simulation of the BER for the above

1 2 3 4 5 6 7 8 9 10
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No(dB)

B
E

R

One Bit Error correcting BCH
Two bit error correcting BCH
Concatenated BCH and Hamming Code
Orthogonaaly Concatenated BCH
and Hamming Code

Figure 4.21: Comparison of BER performance of di�erent coding schemes with
our proposed coding

107

mentioned system has been done using Matlab. Noise in optical network obeys

Poisson statistics [128] so, the noise (i.e., Eb

No
where Eb is the bit energy density,

and No is the power spectral density of the noise) is generated using Poisson

distribution during simulation. As we have mentioned IPBus protocol over one

gigabit Ethernet is used for controlling DAQ chain. Python scripts are used to

capture data from Ethernet port of host PC. Before starting of data acquisition

E-links are need to be synchronized and each steps of synchronization is shown

in Figure 4.22. For synchronization di�erent special characters like SOS, K28.1,

Figure 4.22: Synchronization over Elink between FEBs and OIB

K28.5 and EOS are required as shown in Figure 4.22 and the K28.1 character is

mainly used to �x the path delay between di�erent E-links. After the completion

of synchronization process hit generator in the FEB emulator generates hit data.

We have tested the e�ciency of our proposed error correction model for the

con�guration memory injecting a di�erent number of faults (starting from 500

108

Figure 4.23: Presence of residual error after error correction with di�erent error
correcting codes and scrubbing with CRC

to 5000) randomly into the con�guration memory through ICAP interface us-

ing a fault injector and compared its e�ciency with Hamming and BCH code.

Figure 4.23 compares di�erent models in terms of residual errors for di�erent

number of injected errors. Residual errors indicate the presence of error in the

con�guration memory after error correction. During scrubbing if CRC detects

the error then original bit �le will be downloaded without checking the number

of erroneous bits, so residual error is always zero in this method. Hamming code

can correct single bit errors and only detect double bit errors. On the other hand

BCH can correct two-bit errors and hence, BCH code gives good performance

compared to Hamming code. There is always a chance for the presence of an un-

detected error when ECCs are used to detect or correct errors in the con�guration

memory which increases the chance of residual errors. This is more prominent

when the number of injected faults are high. Scrubbing with CRC gives the best

performance compared to the Hamming or BCH code as shown in Figure 4.23. To

test the e�ciency of our proposed error correcting models we have used another

parameter called Availability of FPGA devices that measure fault repairing time

for the con�guration memory as shown in Figure 4.24. It can be de�ned as in

109

equation 4.1.

Availability �
1

1 � MTTD�MTTR

MTTF

(4.1)

Figure 4.24: Comparison of availability of FPGA devices after error correction
using di�erent error correcting schemes and Scrubbing with CRC

Here Mean Time to Failure (MTTF) is de�ned as the time for continuous

error free operation of a memory unit, Mean Time to Detect (MTTD) is the time

interval between the error occurred due to the bit �ip in the memory unit and the

time at which it is detected. Mean time to repair (MTTR) is the average time

for error correction. When there is no error MTTD and MTTR will be zero and

availability is one that means all the FPGA devices are available. EDAC time in

con�guration memory of FPGA devices is di�erent for di�erent EDAC models.

Hence, MTTD and MTTR will be di�erent for scrubbing with CRC, Hamming

and BCH code. When error correcting models unable to detect or correct errors

in spite of the presence of errors in the con�guration memory MTTD and MTTR

becomes in�nite, and availability becomes zero. As error correction time is zero in

scrubbing with CRC it has less MTTD and MTTR value compared to Hamming

or BCH code based model. Hence, the availability of FPGA devices are always

high when it uses scrubbing with CRC compared to Hamming or BCH code based

models. There is always a chance of the presence of residual errors in Hamming

110

or BCH code based models so availability may be zero for higher values of errors

but in scrubbing based model availability is never be zero as shown in Figure 4.24.

Results of our proposed latency optimization method for high speed com-

munication is shown in Figure 4.25. Figure 4.25 (a) shows that before latency

optimization there is a delay between Frame Clock transmitted and recovered

clock in the receiver of optical communication module. This delay is resulted as

the recovered clock has to go through the elastic bu�er for clock domain cross-

ing. When latency optimization method is applied recovered clock need not to

TxFrameClock TxFrameClock

RxFrameClock RxFrameClock

(a) (b)

Figure 4.25: (a) TxFRameClock and RxFrameClock before latency optimization
(b) TxFRameClock and RxFrameClock after latency optimization

go through any elastic bu�er as the same function is done externally. This will

reduce latency by 12 ns as shown in Figure 4.25(b).

We have also tested performance of the MMM using simulation and results of

simulation are shown in Figure 4.26. To test the algorithm, we have generated one

data pattern for every clock pulse. Clock and input data in the simulation result is

represented by clk and dina_test_in[29:0]. Pattern generator generate data with

1 us randomness. Address of the static memory and dynamic memory are repre-

sented by sta_addra and dyn_addra respectively and if data is already present in

static memory address will be fetched from dynamic memory. Signal mem_fill

decides whether data will enter into static memory or dynamic memory and it is

mainly derived from status information of static memory. count_data[0:4] indi-

cates that address in some of the register is incrementing that represents write

operation and address in some of the register is decrementing that represents

111

Figure 4.26: Simulation result for memory management module

read operation. It can be seen that with each clock pulse data is writing on one

memory bank while data is read out from another memory bank so there is no

wastage of clock pulse. fragment_en represents the number of static memory

for which rd_en and wr_en signal are disable and fragment elimination process

starts to work. Here fragment elimination process started on 3
rd

memory bank.

In the output section, data is readout serially both from static as well as dynamic

memory. Data is always read out �rst from the static memory and is represented

by doutb_test[29:0] and then data will be read out from the dynamic memory if

repetition is there which is represented by dynamic_out[29:0]. In Figure 4.26,

read enable signal of 0
th

memory pair is enabled and hence data is present in

doutb_test1[29:0] for 0
th
static memory and dynamic_out1[29:0] for 0

th
dynamic

memory. Finally rearranged data output stream can be seen from the the signal

Final_out. Table 4.4 indicates resource utilization by di�erent modules during

FPGA implementation of our proposed DAQ system. Table 4.5 summarizes dif-

ferent features of our proposed DAQ system and DAQ systems discussed in the

existing literatures and it is very much evident that our scheme is well equipped

for high speed error resilient data acquisition.

112

Table 4.4: Resource Utilization

LUT FF I/O BUFG
IOB 3567(1.75%) 2482(0.61%) 35(7%) 17(53.12%)
CIM 5672(2.78%) 5791(1.42%) 19(4.72%) 13(40.62%)
IPbus 2530(1.24%) 3276(0.8%) 215(43%) 2(2.65%)
FEB 1709(0.84%) 1290(0.32%) 8(1.6%) 2(6.25%)

Table 4.5: Summery of di�erent features of our proposed DAQ system and dif-
ferent state of the art solutions

Device Speed Error correcting Line coding
Used (Gbps) capability used

Lattice SCM40 [48] 1.60 Not mentioned 8b©10b
Altera Stratix IV [49] 8.50 Not mentioned 8b©10b

Altera EP2SGX90EF1152C5 [51] 2.125 Not mentioned 8b©10b
Virtex-II Pro series FPGA [50] 1.75 CRC used for 8b©10b

error detection only
Kintex-7 [129] 4.80 Reed Solomon code Scrambler
Kintex-7 5 Orthogonal Concatenated code Scrambler

4.6 Conclusion

In this chapter we have proposed a novel DAQ design for HEP experiments. The

proposed DAQ can work in radiation zone and supports high-speed optical data

communication with multi-bit error correction, e�cient memory management for

easy data processing. The proposed DAQ system is interfaced with a front-end

electronics emulator board. The DAQ design has been implemented on Xilinx

Kintex-7 board and real test setup has been developed involving board to board

communication, board to computer interface over Ethernet for controlling and

PCIe interfacing with a host computer for data transfer. A detailed performance

analysis of the DAQ implementation is presented in terms of BER performance

of the proposed multi-bit error correction code, robustness in radiation zone and

controlling using IPbus protocol. In the next chapter we are planning to discuss

error mitigation technique in storage memory element.

113

Chapter 5

Latency optimized clustered error

correction for mult-level memory

chips using LSBCPC

ECCs are commonly used to mitigate the e�ect of soft errors arising due to MBUs

in physically adjacent cells in �ash memory. The necessity of the use of complex

ECCs increase many folds with the use of multilevel memory cells (MLC) in highly

densed solid state memory devices (SSMD) where each memory cell can store

more than one information bit. The probability of formation of adjacent MBUs

or clustered error increases with the reduction of noise margin due to partitioning

of the threshold voltage of MOS transistor into multiple levels. With the increase

of the complexity of ECCs overhead due to redundant bits and latency the error

correction time also increases. Again single error correcting Hamming or Hsiao

code are also not suited against MBUs. We propose a latency optimized clustered

error correction technique using linear shortened block code based product code

(LSBCPC) that promises correction of higher number of adjacent erroneous bits

compared to other multi-bit ECCs. Here, we have applied a technique called

shortening of the code on the component block codes of the product code in

our proposed method to enhance EDAC capability compared to the traditional

multi-bit ECCs. Though the proposed method has higher overhead compared

to multi-bit error correcting RS or BCH code, it o�ers simple decoding circuit,

114

higher error correction coverage with enhancement of the lifetime of the �ash

memory devices. We have measured the performance of the proposed method in

terms of redundant bits, error correction coverage, hardware area and decoding

latency.

5.1 Introduction

Due to low cost, absence of external refresh circuitry and its nonvolatile nature

�ash memory chips are now a days used as permanent storage devices in di�erent

applications. Flash memories are commonly used as USB �ash drives, internal

storage devices in di�erent electronics gadget etc. There are mainly two types

of �ash devices: NAND and NOR �ash. NOR �ash has higher read speed and

random access capabilities, which makes it suitable to store data in computer and

mobile. Due to the limitation of scaling in the dimension of MOS transistors using

NOR technology, memory density can not be increased above a certain threshold.

On the other hand fast write and erase capability and higher memory density

makes the NAND based �ash memory more suitable for storage of large amount

of data. In this chapter we will mainly focus on adjacent MBU or clustered error

mitigation in the NAND �ash memory. MLC techniques in �ash device helps a

memory cell to store more than one information bits using �oating gate technology

by partitioning threshold voltage of MOS transistor into multiple levels. MLC

NAND �ash that can store two bits information is very common while three

and four bits per memory cell of a NAND �ash memory are reported in recent

literatures [130], [131].

Though NAND �ash has �ourished in modern memory technology it has some

inherent problems like limited number of writes [132], [133], error during erase

operation and leakage current [134], accumulation of corrupted blocks and dis-

turbance during read and write operation. Reduction in memory cell size and

gap between the threshold voltage levels (i.e reduction of noise margin of thresh-

old voltage) degrade system performance. In order to protect the �ash memory

from di�erent types of error and enhance the memory life time e�cient memory

management algorithms, workload distribution algorithm and garbage collection

methods are now a days using in modern �ash memory. Though di�erent �ash

115

Figure 5.1: Number of adjacent erroneous bits for MLC and SLC with di�erent
technology node [138]

management algorithms help to improve system performance, they are not ef-

�cient to mitigate the e�ect of soft errors arising due to MBUs and SBUs and

hence, di�erent EDACs become integral part of the �ash memory to mitigate the

e�ect of soft errors [135]. Hamming or Hsiao code may be su�cient for single

level memory cell (SLC) [136] but they are incapable to protect from the e�ect

of soft errors in MLC �ash memory. Figure 5.1 depicts the number of adjacent

bits that are a�ected due to soft error in MLC and SLC �ash with the shrink-

ing of technology node from 180 nm to 28 nm and it clearly shows that e�ect

of MBUs are prominent in MLC �ash memory compared to SLC �ash memory

in the same technology node [137]. In general multi-bit error correcting BCH

code [139] and its non-binary version, RS codes are used in MLC �ash memory

to correct MBUs. A concatenated code with BCH as inner code and trellis coded

modulation (TCM) as outer code has been developed by authors in [140] to im-

prove storage reliability of �ash memory. Product codes comprising of Hamming

with BCH code and Hamming with RS code are proposed in [141] that achieve

better performance compared to their component codes in terms of area, latency

and BER.

116

Choosing of error correction schemes in �ash memory depends on type of

errors and distribution of the errors i.e whether it is adjacent MBUs, discrete

MBUs (when erroneous bits are discrete but not far from each other) or SBU

(when the distance between erroneous bits is large). In SLC NAND �ash, error

distribution may be considered as random but in MLC with increased technology

scaling probability of occurrence of MBUs increase. In the previous chapters

we have considered errors in the memory mainly due to radiation. Here along

with deposition of energy by charge particles error arises during program or erase

cycles of �ash memory that may create MBUs are also considered. In MLC �ash

devices, threshold voltage of a MOS transistor is partitioned into multiple levels

and hence, charge particles with low energy or slight deviation from narrow read

or write cycle can corrupt the stored bit in memory cells. We have studied two

models here: fully adjacent error model or clustered error where erroneous bits

are adjacent to each other and hybrid model combining adjacent and nonadjacent

MBUs (discussed later). In this chapter, our key contributions are:

� An e�cient latency optimized product code with component codes as short-

ened linear block code is proposed to mitigate the e�ect of MBUs due to

both clustered and almost clustered error in MLC NAND �ash memory.

� A novel hardware architecture is proposed using pipelining and parallel

processing to reduce overall latency during EDAC.

� Error correction e�ciency, mean time to failure (MTTF), decoding com-

plexity of our proposed algorithm is calculated using the data taken from a

real experiment.

5.2 MLC NAND FLASH Memory Background

In 1989, Toshiba had �rst introduced NAND �ash memory in the semiconduc-

tor industry and a now-a-days di�erent vendors like Samsung, SanDisk, Micron,

SK Hynix and Intel manufactured �ash devices. Instead of slower performance

compared to DRAM, endurance and reliability problem with higher density, fast

programming and erase speed and lower cost per bit helps to increase the demand

117

Source

n n

p-Substrate

Oxide Layer

Floating Gate

Control Gate

Drain

Oxide Layer

G

S D

Erased
 State

 "1"

Program
 State

 "0"

Source

n n

p-Substrate

Oxide Layer Floating Gate

Control Gate

Drain

Oxide Layer

G

S D

Erased
 State

 "1"

Program
 State

 "0"

(a)

 (b)

Figure 5.2: Programming and Erasing a Floating Gate Transistor

of NAND �ash [142]. NAND �ash basically works using �oating gate transistor

technology. In �oating gate MOSFET two gates are used: control and �oating

gate as shown in Figure 5.2. Floating gate is isolated from any electrical connec-

tion by oxide layer in both sides and hence any charge within it remains trapped

and trapped charge can be altered by either using hot carrier injection mechanism

or Fowler-Nordheim tunneling method [143]. If no voltage is applied to �oating

gate, the device operates like normal MOSFET where a positive voltage in con-

trol gate above threshold creates channel and conduction can be started between

source and drain by proper voltage at source and drain. When a high positive

voltage is applied to �oating gate, electrons from the source, drain and channel

tunnel through the oxide and get trapped within the �oating gate. This state is

called programmed state and designated by "0" as shown in Figure 5.2(a). This

in turn increases the threshold voltage to form the channel and on the device.

When a negative high voltage is applied to push back the trapped electron into

the substrate then this operation is known as erase operation. The state after

the erase operation is known as erased state and designated as "1" and shown by

Figure 5.2(b). When threshold voltage of a MOSFET in a NAND cell has only

118

"1" "0"

"11" "00" "01" "10"

"111" "000" "001" "010" "011" "100" "101" "110"

Erased State Programmed State

SLC (Single bit per cell)

MLC (Two bits per cell)

MLC (Three
bits per cell)

Figure 5.3: Threshold voltage distribution of SLC, MLC with two and three bits
per cell

two state it can store only one bit per cell and known as SLC. On the other hand

if threshold voltage has more than two states like four states (two bits per cell)

or eight states (three bits per cell) then it is known as MLC. In general, when the

threshold voltage has 2
k
level, MOSFET can stores maximum k bit information.

Threshold voltage distribution for SLC and MLC with two and three bits per cell

is shown in Figure 5.3.

The smallest unit in the �ash memory that can be erased at a time is known

as block. Typical block size in �ash memory can be 512 Kb, 256 Kb and 128

Kb. Each block comprises of multiple pages and typical page size is 2-16Kb. A

number of blocks (typically 1024) form a memory bank as shown in right side

of Figure 5.4. Page is the smallest unit on which read and write operations

can be done. Di�erent error mitigation techniques are applied on a data set in

a page and generated redundant bits are stored on the same page. MOSFET

with �oating gates are arranged in a matrix as shown in Figure 5.4 and �oating

gates of all the MOSFETs along the columns are connected through a common

line known as "Bit-Line (BL)" whereas gates of all MOSFETs along the rows

are connected through a common line known as "Word-Line (WL)". MOSFETs

which are connected to a common WL form a physical page and each physical

page corresponds to a single logical page in case of SLC and multiple logical pages

119

Bit-Line Bit-Line Bit-Line Bit-Line

Word-
 Line

Word-
 Line

Word-
 Line

Word-
 Line

Word-
 Line

Block

Bank

Block

Block

BlockPhysical
 Page
Mapping

Figure 5.4: Organization of Bank, Block and pages in the MLC �ash memory

in case of MLC.

In order to program a page we have to select the "WL" line corresponding

to that page (i.e make WL high) and to select a cell on this page, "BL" line

corresponding to that cell connects to ground. In this condition the particular

cell is programmed to store "0" into it. On the other hand to store "1" into a

cell both "WL" and "BL" lines corresponding to the cell should be connected

to V cc. This condition inhibits the cell to be programmed and keeps it into

erased state. During the read operation initially "BL" line is to be selected and

then apply a voltage VR whose value is between the erased and program state to

the corresponding "WL" line. If the MOSFET is in the erased state, threshold

voltage is less than VR and if it is in the programmed state, threshold voltage

will be higher than VR. During erase operation substrate is connected to high

voltage and gate is connected to low voltage which helps to bring back the trapped

electrons into the substrate from �oating gate.

There are two options of programming in each page of �ash memory: single

page programming (SPP) and multi-page programming (MPP). In SPP [144], all

bits of a cell is in the same page so that they can be programmed at the same time.

120

On the other hand, in MPP [145], bits of a memory cell are in di�erent pages so

that they are programmed at di�erent instant. As for example, when three bits

of a Triple-Level-Cell are in three di�erent pages, they will be programmed using

MPP and when they are in the same page they will be programmed using SPP.

Maximum NAND �ashes in general, use MPP due to its higher programming

speed but SPP also has some advantages like tighter threshold voltage window

that is very helpful in the era of device scaling. As in SPP all the bits of a cell

are on the same page so there is more probability of occurrence of adjacent cell

upsets compared to MPP. Here we have considered error arising for both SPP

and MPP in MLC �ash memory with two bits per cell.

5.2.1 Error distribution in MLC Flash

In SLC �ash, damage of a memory cell corrupts a single bit and creates SBU

but in MLC �ash memory damage of a cell corrupts multiple bits. Figure 5.5 (a)

shows a single page of two-level MLC which is programmed by SPP and blocks

indicated by same color form a memory cell. Figure 5.5 (b) shows a single page

of a two-level MLC which is programmed by MPP and each block indicated by

di�erent colors represent data bits from di�erent memory cells. In Figure 5.5 (b),

(a) (b)

Figure 5.5: (a) Single page programming based MLC (b) Multi-page programming
based MLC

adjacent MBUs a�ect multiple cells that is quite similar to the e�ects of MBUs

in SLC �ash memory. On the other hand, in SPP based MLC, adjacent MBUs

may a�ect either data bits of a single cell or data bits from adjacent cells. As

for example in two-level MLC �ash shown in Figure 5.5(a), errors in the �rst

121

and second bits damage both the data bits of a single cell and errors in second

and third bits damage two adjacent cells. Hence, MBUs create both adjacent cell

and adjacent bit errors in SPP based MLC whereas MBUs in MPP based MLC

generate only adjacent bit errors. Now if MBUs are adjacent to each other they

form the clustered error as shown in Figure 5.6 (a) and (b) where all bits within

the cluster are a�ected. It may so happen that the MBUs are not adjacent to each

other and some bits within the adjacent erroneous bits remain una�ected, then

(a) (b) (c) (d)

Figure 5.6: Di�erent cluster and almost cluster patterns

the error patterns are termed as almost clustered error as shown in Figure 5.6(c),

(d). Cluster size is calculated by the distance between the farthest erroneous bits

within the cluster. As for example cluster size in Figure 5.6 (a), (b), (c) and (d)

are 4�4, 5�5, 5�5 and 4�4 respectively. Our proposed methods can mitigate

the error arises due to both clustered and almost clustered errors both in SPP as

well as MPP based MLC �ash memory.

5.3 Linear Shortened Block code based Product

code

Product codes are a coding technique where small length codes are serially con-

catenated to form a long length code that has higher error correcting capabilities

compared to the constituent codes. As in product codes component codes encode

data orthogonally, it provides good error correction capability compared to cross

parity check codes with e�cient and simple decoding circuit. Consider two block

codes A and B having the parameters [n, kA, dA], [m, kB, dB] respectively where

n and m are the length of encoded data, kA and kB represent data lengths of A

and B before encoding, dA and dB are the hamming distance of A and B. The

122

product code C can be represented by A i B where i is known as Kronecker

product [146]. If GA and GB be the generator matrix of A and B then the gener-

ator matrix of the product code C can be written as GC � GA i GA . When U

represents the matrix of dimension kA � kB and G
T
A be the transpose of GA then

C can be obtained by equation 5.1.

C � G
T
A � U �GB (5.1)

The parameters of the resulting product code C are [mn,kAkB,dAdB] with code

rate RARB where RA and RB are code rates of A and B respectively.

Here we have used multi-bit adjacent error detecting block code as component

codes. As the encoding is done using generator matrix, decoding of the product

code can be done using another special kind of matrix called parity check matrix.

During the decoding, readback data are multiplied with parity check matrix and

generate syndrome vectors (S) that helps to detect and correct errors in the

corrupted data. If HA and HB are parity check matrices of codes A and B, then

the syndrome vectors due to row decoding (SA) and column decoding (SB) can

be calculated using equation 5.2

SA � C �H
T
A and SB � C

T
�H

T
B (5.2)

When all the syndrome vectors are unique they can locate the position of the

error and correct them. On the other hand, when a group of syndrome vectors

represent a particular error patterns it can not correct errors but can only detect

error patterns. In this chapter, error patterns are detected using the syndromes

of the component code and then correct the error taking the information from the

syndromes of both of the component codes instead of correcting error patterns

directly using one component code. It enhances the error correction e�ciency

of product code against the adjacent MBUs and reduces error correction time

because syndrome calculations using the component codes are done in parallel.

Parity check matrix can be represented as H=[In�k,P
T
] and then generator matrix

can be derived from the parity check matrix using equation G=[P , Ik].

Here we have applied a method called shortening of the code which reduces

the code length of component code keeping the redundancy �xed. Hence, a

123

(n,kA) shortened code can be formed from (p,l) code such that n � kA � p � l

where kA � 2
q
where q is an integer. In order to generate parity check matrix

for (n,kA) block code, �rst choose lexicographic matrix (L) for (p,l) block code

with dimension �p � l� � p in which i
th
column contains binary value of i. From

L, develop the parity check matrix for both the component codes obeying the

following constraints:

� There should not be any column that contains null vector in parity check

matrix.

� There may be repetition in column of parity check matrix.

� First (p� l) columns of parity check matrix should contain identity matrix.

� Cj=A1j=A2j.........Avj=φ where A1j= Cjh Cj�1¾ j=1 to (n-1), A2j= Cjh

Cj�1 Cj�2 ¾ j=1 to (n-2), Avj= Cjh Cj�1....... Cj�v ¾ j=1 to (n-v), C in-

dicates columns of lexicographic matrix and φ represents null matrix. Here

v is the number of the adjacent erroneous bits that needs to be detected.

Here the component codes of the product code will be used only for error detection

and syndrome vectors generated due to di�erent number of adjacent erroneous

bits should not overlap (i.e di�erent error patterns produce distinct syndrome vec-

tors) which is indicated by 4
th
constraint. As for example syndromes generated

by two adjacent erroneous bits should not overlapped with syndromes generated

by three adjacent erroneous bits but syndromes generated by two adjacent erro-

neous bits at di�erent positions could be same. Pseudocode given by algorithm 4

is used to generate parity check matrix for (21,16) shortened linear block code

from lexicographic matrix of (31,26) linear block code. This algorithm is basically

a recursive backtracking algorithm where searching starts from a partial parity

check matrix that has already satis�ed the above mentioned constraints. In every

recursion a column from the lexicographic matrix will be added with the partial

parity check matrix and it will be checked whether updated partial parity check

matrix satisfy the constraints described previously. If the the updated matrix

satis�es the constraints, newly added column will be kept otherwise it will be dis-

carded and another new column will be selected. This process will continue until

124

all the columns of shortened linear block code are selected and full parity check

matrix is formed. Here we have given pseudocode for generation of parity check

matrix for (21,16) shortened block code and generation of parity check matrix for

the code having other dimension obey the same constraints as mentioned earlier.

The generated parity check matrix (HC(21,16)) for (21,16) shortened linear block

code is shown in equation 5.3. It can detect upto four adjacent erroneous bits

and syndrome for di�erent adjacent erroneous bits are shown in Table 5.1. Now if

(21,16) shortened linear block code is used as the component code in the product

code for the data set having dimension 16�16 generated product code can correct

cluster having maximum size of 4�4.

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂
\

1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1

0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0

[_____________________]
(5.3)

In the similar way parity check matrix for (38,32) (HC(38,32)) and (71, 64)

(HC(71,64)) linear block codes are shown in equation 5.4 and 5.5 respectively

which are formed from the lexicographic matrix for (63,57) and (127,120) block

code using the same constraints mentioned previously.

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂\

1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 1 1 0 0 0 0 0 1 0

[__________________________]

(5.4)

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂\

10000001010000010000010000010000010000010000010000010000010000010000010

01000000100000100000100000100000100000100000100000100000100000100000100

00100000000010000010000010000010000010000010000010000010000010000010000

00010001000100000100000100000100000100000100000100000100000100000100000

00001000001000001000001000001000001000001000001000001000001000001000001

00000100000001000001000001000001000001000001000001000001000001000001000

000000100

[_______________________________]

(5.5)

125

Algorithm 4 Generation of parity check matrix from lexicographic matrix

Require: p,l;
Ensure: Parity check matrix H;
1: L(p-l,p)=hammgen(5,[1 0 1 0 0 1]); D= transpose(L);
2: H= zeros(21,5);Hpar�1 � 5, 1 � 5� = D(1:5,1:5);
3: twocol= zeros(20,5),threecol= zeros(19,5),fourcol=zeros(18,5);
4: while (m (4) do
5: twocol(m,1:5)= mod(xor(D(m,1:5),D((m+1),1:5)),2); m= m+1;
6: end while;
7: while (n (3) do
8: threecol(n,1:5)= mod(xor(twocol(n,1:5),D((n+2),1:5)),2); n= n+1;
9: end while;

10: while (r (2) do
11: fourcol(r,1:5)= mod(xor(threecol(r,1:5),D((r+1),1:5)),2); r= r+1;
12: end while;
13: u1=6; i= 6;
14: while (i (21) do
15: t=0;p=0;
16: while (u1 (31)&& (p=0) do
17: while (z1 (20)&& (check1=0) do
18: if (twocol(z1,1:5)==D(u1,1:5)) then check1 =1;
19: end if ;z1=z1 + 1;
20: end while;
21: while (z2 (19)&& (check2=0) do
22: if (threecol(z2,1:5)==D(u1,1:5)) then check2=1;
23: end if ;z2=z2+ 1;
24: end while;
25: while (z3 (18)&& (check3=0) do
26: if (fourcol(z3,1:5)==D(u1,1:5)) then check3=1;
27: end if ;z3=z3+ 1;
28: end while;
29: if ((check1=1) or (check2=1) or (check3=1)) thencheck�nal=1;
30: end if ;
31: c1(1,1:5)= mod(xor(D(u1,1:5),H((i-1),1:5)),2);
32: if (c1(1,1:5)=[00000]) then g1=1;
33: end if ;
34: while ((x21 ((i-1))&&(f21=0)) do
35: if (c1(1,1:5)=H(x21,1:5)) then f21=1;
36: end if ;x21=x21+1;
37: end while;
38: while ((x23 ((i-3))&&(f23=0)) do
39: if (c1(1,1:5)=threecol(x23,1:5)) then f23=1;
40: end if ;x23=x23+1;
41: end while;

126

42: while ((x24 ((i-4))&&(f24=0)) do
43: if (c1(1,1:5)=fourcol(x24,1:5)) then f24=1;
44: end if ;x24=x24+1;
45: end while;
46: c2(1,1:5)= mod(xor(c1(1,1:5),H((i-2),1:5)),2);
47: if (c2(1,1:5)==[00000]) then g2=1;
48: end if ;
49: while ((x31 ((i-1))&&(f31=0)) do
50: if (c2(1,1:5)=H(x31,1:5)) then f31=1;
51: end if ; x31=x31+1;
52: end while;
53: while ((x32 ((i-2))&&(f32=0)) do
54: if (c2(1,1:5)=twocol(x32,1:5)) then f32=1;
55: end if ; x32=x32+1;
56: end while;
57: while ((x34 ((i-4))&&(f34=0)) do
58: if (c2(1,1:5)=fourcol(x34,1:5)) then f34=1;
59: end if ; x34=x34+1;
60: end while;
61: c4(1,1:5)= mod(xor(c2(1,1:5),H((i-3),1:5)),2);
62: if (c4(1,1:5)=[00000]) then g4=1;
63: end if ;
64: while ((x41 ((i-1))&&(f41=0)) do
65: if (c4(1,1:5)=H(x41,1:5)) then f41=1;
66: end if ; x41=x41+1;
67: end while;
68: while ((x42 ((i-2))&&(f42=0)) do
69: if (c4(1,1:5)=twocol(x42,1:5)) then f42=1;
70: end if ; x42=x42+1;
71: end while;
72: while ((x43 ((i-3))&&(f43=0)) do
73: if (c4(1,1:5)=threecol(x43,1:5)) then f43=1;
74: end if ; x43=x43+1;
75: end while;
76: if ((f21=1)½(f23=1)½(f24=1)½(f31=1)½(f32=1)½(f34=1) ½
77: (f41=1)½(f42=1)½(f43=1)) then �nal =1;
78: end if ;
79: if ((g1=0)&&(g2=0)&&(g3=0)&&(�nal=0)&&(check�nal=0)) then
80: H(i,1:5)= D(u1,1:5);twocol((i-1),1:5) = mod(xor(D(u1,1:5),H((i-
1),1:5)),2);

81: twocol((i-1),1:5) = mod(xor(D(u1,1:5),H((i-1),1:5)),2);
82: threecol_mid(1,1:5)= mod(xor(D(u1,1:5),H((i-1),1:5)),2);
83: threecol((i-2),1:5)= mod(xor(threecol_mid(1,1:5),H((i-2),1:5)),2);
84: fourcol_mid1(1,1:5)= mod(xor(D(u1,1:5),H((i-1),1:5)),2);

127

85: fourcol_mid2(1,1:5)= mod(xor(fourcol_mid1(1,1:5),H((i-
2),1:5)),2);

86: fourcol((i-3),1:5)= mod(xor(fourcol_mid2(1,1:5),H((i-
3),1:5)),2);p=1;t=1;

87: end if ;u1=u1+1;
88: end while;
89: if ((u1'31) or (p=1)) then u1=1;
90: end if
91: if (t=1) then i= i + 1;
92: end if
93: end while;

The syndrome generated for di�erent adjacent erroneous bits during decoding

using HC(38,32) and HC(71,64) are shown in Table 5.1. When (38, 32) and

(71,64) shortened block codes are used as component code in the product code

for decoding on data sets having the dimension 32�32 and 64�64 they can correct

clustered error of size 5�5 and 6�6 respectively. From Table 5.1 it clearly shows

that syndrome vectors generated due to di�erent error patterns are not overlapped

which helps during decoding of di�erent error patterns. Now we are going to

Table 5.1: Generated syndromes for di�erent adjacent erroneous bits

Memory
size

size of comp-
nent codes No. of Adjacent erroneous bits

1 2 3 4 5 6

16 � 16 (21,16)
16,8,4
2,1,13

3,6,12,9
24,29,18

7,14,28,21,
26,19,11,25

5,10,17,20,
30,15,27 N/A N/A

32 � 32 (38,32)
1,2,4,8
16,32,35

3,6,12,24,
48,39,10,9
17,34

7,14,28,56
19,37,11,25
49,50,38

15,30,60,27
23,5,45,57,
51,54,46,29

31,62,21,13,
44,59,55 N/A

64 � 64 (71,64)
1,2,16,32
4,8,9,64

3,6,12,24,
48,96,73,11,
17,36,34

7,14,28,56,
112,105,75,10,
19,25,44,38,

35

15,30,60,120,
121,107,74,26,
27,29,46,39,

51

31,62,124,113,
123,106,90,18,
61,47,55,59

63,126,117,115,
122,82,22

calculate parity check matrix of the shortened linear block codes that can be

used as component code of product code to correct almost clustered error. The

parity check matrix HC(21,16) in equation 5.3 can also be used to detect adjacent

errors and almost adjacent errors in 16 bit data and hence, it is not mentioned

separately. Parity check matrix for detecting adjacent errors and almost adjacent

errors for 32 bit and 64 bit data set are represented by HR(38,32) and HR(71,64)

as shown in equation 5.6and 5.7 respectively.

128

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂\

1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0

[__________________________]

(5.6)

Syndromes generated for di�erent error patterns in 16 bit, 32 bit and 64 bit data is

shown in Table 5.2. To represent di�erent error patterns in Table 5.2 'X' represent

erroneous bit and '_' represent the bits not a�ected by error. Di�erent error

patterns combining corrupted bits and non-corrupted bits form almost adjacent

error patterns as shown in Table 5.2.

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂\

10000001000000100000010000001000000100000010000001000000100000010000001

01000000100000010000001000000100000010000001000000100000010000001000000

00100000000100000010000001000000100000010000001000000100000010000001000

00010001001000100100010010001001000100100010010001001000100100010010001

00001000010000001000000100000010000001000000100000010000001000000100000

00000100000010000001000000100000010000001000000100000010000001000000100

00000010000001000000100000010000001000000100000010000001000000100000010

[_______________________________]

(5.7)

Table 5.2: Generated syndromes for di�erent error patterns

Memory
size

size of
comp-
onent
codes No. of Adjacent erroneous bits

X XX XXX X_X XXXX
X_XX/
XX_X X__X XXXXX X_X_X

16 � 16 (21,16)

16,8,
4,2,
1,13

3,6,9,
12,24,
29,18

7,14,28,21,
26,19,11,25

5,10,20,
15,17 N/A N/A N/A N/A N/A

32 � 32 (38,32)

1,2,4,8
16,32,35
37,41,49

3,6,12,
24,48

7,14,28,56
19,38,47,61

25,50
5,10,20
40,51

15,30,60
27,54

11,22,
44,59,
21,42,
55,13,
26,52

9,18,36
43,53 N/A N/A

64 � 64 (71,64)
1,2,16,32
4,8,9,64

3,6,12,
24,48,96,
73,11,18,

36

7,14,28,56,
105,75,27,
112,26,28,
44,100,105

5,10,20,
40,80,
41,66,
25,68

15,30,60,
120,121,
107,91,
19,108,
109 N/A N/A

31,62,
124,113,
123,83,
23,101,
111

21,42
84,33,
82,57,
74,29,
70

When (21,16), (38,32) and (71,64) shortened block codes whose syndromes are

shown in Table 5.2 due to di�erent error patterns are used as component codes

for the product code they can correct cluster of erroneous bits having dimension

of 3�3, 4�4 and 5�5. Still now we have discussed generation of syndrome vectors

and parity check matrix for MPP based MLC �ash devices. Now the generation

129

of parity check matrix of the shortened block codes for error detection in adjacent

cells in SPP based MLC �ash devices are discussed.

In SPP based MLC adjacent MBUs either may corrupt two adjacent cells or

a single cell as we have discussed previously. Here adjacent data bits that are

arranged along the row in a page may come from single cell or two adjacent cells

but data bits along the column always come from di�erent cells as discussed in

Figure 5.5(a). Hence, along the row in a data matrix there is a concept of cell error

correction and for this reason we have derived new parity check matrix represented

by equation 5.8- 5.9. Parity check matrix represented by equation 5.3- 5.7 can be

used to detect error along the column. In SPP based MLC we have considered

cell corruption due to only adjacent MBUs. Parity check matrix represented by

HCC(21,16) in equation 5.8 can detect two adjacent cells with 100% e�ciency and

three adjacent cells with�50% e�ciency.Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂
\

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

[_____________________]
(5.8)

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂\

1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0

0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

[__________________________]

(5.9)

Similarly parity check matrix represented by HCC(38,32) in equation 5.9 can

detect three adjacent cells with 100% e�ciency.

Table 5.3: Generated syndromes for di�erent error patterns

Memory
size

size of
component

codes No. of Adjacent erroneous bits

1 2 3

16 � 16 (21,16)
1,2,3,4,5,8,
9,12,16,18,21

6,24,7,10,17,
14,28,29,23,19,
26,11,25,15,

22,27 30,31

32 � 32 (38,32)
1,2,3,4,8,12,
16,20,32,33,48

5,6,7,24,35,
14,28,56,51,34,
13,21,35,37,
15,50,60,23,45

30,59,38,29,39
31,62,63,58,54,
46,25,55,47,61,

26,27,57

130

5.4 Encoding/Decoding using LSBCPC and its hard-

ware implementation

The proposed product code is systematic i.e during encoding process generated

redundant bits are simply appended with the original data bits. The encoding

process involves multiplication of the data with the generator matrix to generate

redundant bits that will be stored into the same memory unit in di�erent physical

locations. Steps involved in the encoding process are:

� Step1: Read data from proper memory location.

� Step2: Choose proper parity check matrix based on the three parameters:

dimension of data set, whether used for clustered or almost clustered error

correction, data set belongs to SPP or MPP based MLC.

� Step3: Parity check matrix can be represented as [In�k,P
T
] and from

this representation calculate generator matrix corresponding to the selected

component codes that can be represented as [P , Ik].

� Step4: Multiply the data set with the generator matrix.

� Step5: Transpose the data set and multiply the transposed data set with

the generator matrix.

� Step6: Write back the data into the memory location from where it was

read out.

� Step7: Store the generated redundant data into the same page of MLC

�ash from where the data set had been read out.

� Step8: Go to step 1 and continue the process until the encoding of the

whole page is completed.

Decoding process involves generation of syndrome vectors, locating of the error

in the data set and then correcting the error. Detailed hardware implementation

of decoding circuit of the proposed algorithm is illustrated in Figure 7.6. Steps

involved in the decoding process are:

131

Column Decoder

Memory Unit
Pipelined Matrix
 Multiplication

Corrected
 Data

Row Decoder

Read Buffer

RAM Store Parity
Check Matrix for
 row decoding

Syndrome
 vectors for
row decoding

Pipelined Matrix
 Multiplication

RAM Store Parity
Check Matrix for
 column decoding

Syndrome
 vectors for
 column
 decoding

OR Logic

Comparator
LUT Stored
for Row
Syndrome

ComparatorLUT Stored
for column
Syndrome

Decider Block

XOR Logic

Write Buffer

Read & Write
 Logic NOR

Logic

Error detected
but can not be
 corrected

Syndrome Decoder

Data Bus

Logic Signal

Figure 5.7: Hardware Implementation of proposed LSBCPC

� Read/Write Logic block generates the address of the data to be read and

send to Row and column decoder;

� Data and corresponding redundant bits are read from Memory unit and are

stored in the Read Bu�er;

� Generate the syndromes for row and column decoding using the parity check

matrix stored in the RAM with the help of XOR network.

� Zero syndrome vectors indicate no error in the data set and nonzero syn-

drome vectors indicate presence of either single or multi-bit errors.

� Syndromes due to di�erent error patterns are stored into LUT and are

compared with the generated syndrome vectors as shown in Figure 7.6.

� Based on the result of comparison error patterns along row and columns

are decided and from that decider block detects exact location of erroneous

bit and correct it using the XOR logic.

� Corrected data will be sent to the write bu�er and from there data along

with redundant information will write back to the memory unit.

132

The generated syndrome vectors for both row and column decoding are fed to

a OR logic that gives high output when non-zero syndromes are generated. If

the syndrome decoder block can successfully detect and correct the erroneous

bits it gives high signal corresponding to di�erent syndromes to NOR logic block

otherwise it gives '0' output. Output of NOR logic block is AND-ed with output of

OR logic block and its output becomes zero when errors are successfully corrected

otherwise output of AND gate will be high to inform the user that error is detected

but can not be corrected.

Encoding and decoding process involves matrix multiplication i.e multiplica-

tion of data set with the generator matrix during encoding process and multipli-

cation with parity check matrix during decoding process. In order to speed up the

encoding and decoding process row and column operations are done in parallel.

At the same time we have introduced pipeline architecture in matrix multiplica-

tion as described in algorithm 5. Data with redundant bits are multiplied with

parity check matrix and stored in P1 and P2. Here we have applied three stage

pipelined architecture to speed up multiplication process. The timing diagram of

the pipelined architecture of the proposed matrix multiplication is shown in Fig-

ure 5.8. Here states S1, S2 and S3 will �ll up the pipeline while states S5, S6, S7

will �ush the pipeline. In stage4 all the four states will remain active. X0,X1,X2

and X3 registers in algorithm 5 are used to keep track the indices of the data

sets. Hence, initially there was no data for three clock cycle and then for every

clock cycle data will come out serially. For the e�cient hardware implementation

of the encoder and decoder some optimization criteria can be applied during the

derivation of parity check matrix. Here we have applied two optimization criteria

as described in [147]:

� Choose parity check matrix with the smallest number of ones. This criteria

helps to implement encoder and decoder circuit with minimum number of

logic gates that consume the smaller area.

� Number of ones in di�erent rows of parity check matrix decide the speed

of decoding process. Hence, the row having maximum number of one is

the deciding factor for latency of encoding and decoding process. With the

decrease of number of ones in the heaviest row in a parity check matrix

latency of encoding and decoding process reduces.

133

Algorithm 5 Pipelined Architecture for Row and Column Syndrome vector
Generation

Require: A[R,R],H[h,R];
Ensure: RSmatrix[R,h], CSmatrix[R,h];
1: Variable:i0, j0, k0, k2, i3, j3, k3, u, v, w,P1,P2,sum1,sum2, Done, Start;
2: Assign X0,X1,X2,X3="000000000000000";
3: i0:= CONVINTEGER(X0(14 downto 10)), j0:= CONVINTEGER(X0(9

downto 5));
4: k0:= CONVINTEGER(X0(4 downto 0)), k2:= CONVINTEGER(X2(4

downto 0));
5: i3:= CONVINTEGER(X3(14 downto 10)), j3:= CONVINTEGER(X3(9

downto 5));
6: k3:= CONVINTEGER(X3(4 downto 0));
7: Case State is:
8: when S0=>
9: Done <= '0'; X0 <= "000000000000000";

10: if (Start = '1') then
11: State := S1;
12: else
13: State := S0;
14: end if ;
15: when S1=>
16: u=A(i0, k0), v =B(k0, j0), w=A(k0, j0), X1= X0, X0 = X0 + 1, State := S2;
17: when S2=>
18: u=A(i0, k0), v =B(k0, j0), w=A(k0, j0);
19: P1= u � v, P2= w � v, X2 = X1, X1= X0, X0= X0 + 1, State := S3;
20: when S3=>
21: u=A(i0, k0), v =B(k0, j0), w=A(k0, j0);
22: P1= u � v, P2= w � v;
23: if (k2 = 0) then
24: sum1 = P1, sum2 = P2;
25: else
26: sum1 = sum1 + P1, sum2 = sum2 + P2;
27: end if ;
28: X3= X2, X2 = X1, X1= X0, X0= X0 + 1, State:= S4;
29: when S4=>
30: u=A(i0, k0), v =B(k0, j0), w=A(k0, j0);
31: P1= u � v, P2= w � v;
32: if (k2 = 0) then
33: sum1 = P1, sum2 = P2;
34: else
35: sum1 = sum1 + P1, sum2 = sum2 + P2;
36: end if ;

134

37: if (k3 = 20) then
38: RSmatrix(i3, j3)=sum1,CSmatrix(i3, j3)=sum2;
39: end if ;
40: X3=X2,X2=X1,X1=X0;
41: if (X0=9260) then
42: State:=S5;
43: else
44: State:=S4, X0=X0+1;
45: end if
46: when S5=>
47: P1= u � v, P2= w � v;
48: if (k2 = 0) then
49: sum1 = P1, sum2 = P2;
50: else
51: sum1 = sum1 + P1, sum2 = sum2 + P2;
52: end if ;
53: if (k3 = 20) then
54: RSmatrix(i3, j3)=sum1,CSmatrix(i3, j3)=sum2;
55: end if ;
56: X3=X2,X2=X1,State:=S6;
57: when S6=>
58: if (k2 = 0) then
59: sum1 = P1, sum2 = P2;
60: else
61: sum1 = sum1 + P1, sum2 = sum2 + P2;
62: end if ;
63: if (k3 = 20) then
64: RSmatrix(i3, j3)=sum1,CSmatrix(i3, j3)=sum2;
65: end if ;
66: X3=X2, State:=S7;
67: when S7=>
68: if (k3 = 20) then
69: RSmatrix(i3, j3)=sum1,CSmatrix(i3, j3)=sum2;
70: end if ;
71: State:=S8,X0="000000000000000",Done=1;
72: when S8=>
73: if X0=48 then
74: X0="000000000000000",State:=S0;
75: else
76: X0= X0 + 1, State:= S8;
77: end if ;

135

Figure 5.8: Timing Diagram for pipelined architecture of matrix multiplication
during syndrome generation

The example shown below is very helpful to demonstrate how the optimization

criteria helps to choose proper parity check matrix. We have already shown in

equation 5.6 that HR(38,32) is the parity check matrix used for decoding of (38,32)

shortened block code. There is another parity check matrix for(38,32) shortened

block code that can be derived from the lexicographic matrix of (63,57) linear

block code. It is represented by HRL(38,32) in equation 5.10.

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂\

1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1

[__________________________]

(5.10)

The total number of ones in HRL(38,32) and HR(38,32) are 66 and 40 respectively.

At the same time number of ones in heaviest row of HRL(38,32) and HR(38,32) are

18 and 8 respectively. Hence we have selected HR(38,32) as parity check matrix

for decoding of 38 bit encoded data instead of HRL(38,32).

5.5 Results and Performance Analysis

Proposed fault correcting models are implemented on hardware using Xilinx Vi-

vado 2015.4 platform and tested using MATLAB simulations. During the simu-

lation faults are injected in a clustered format (i.e MBUs are created in adjacent

memory locations) to test di�erent fault correcting models. We have considered

both clustered and hybrid model for MPP based �ash memory and only clus-

136

tered model for SPP based �ash memory. Figure 5.9 (a) shows maximum cluster

size that can be corrected in MPP based �ash memory. As hybrid models can

(a) (b)

Figure 5.9: Error correction coverage of LSBCPC of di�erent sizes (a) for both
adjacent as well as nonadjacent MBUs (b) only for adjacent MBU

correct both adjacent as well as nonadjacent MBUs it shows better performance

compared to clustered models with the increase of cluster size for di�erent sizes

of LSBCPC. When the cluster size is small clustered model sometimes shows

better performance compared to hybrid model. As for example, when the cluster

size is 4�4 clustered model of LSBCPC having dimension of 16�16 shows better

performance compared to hybrid model having the same dimension. This is due

to the fact that component code in the clustered model generate distinct syn-

dromes for upto four adjacent erroneous bits whereas component code for hybrid

model generate distinct syndromes only for cluster size 3�3. (21,16) linear block

code can generate distinct syndrome vectors only for four adjacent erroneous bits

but it can still detect any number of adjacent number of erroneous bits without

giving distinct syndrome vectors. Hence, with the increase of cluster size error

correction coverage for 16�16 LSBCPC deteriorates. Hybrid model of LSBCPC

can correct a cluster of size 3�3 with 100% e�ciency and after that e�ciency of

LSBCPC gradually decreases as depicted in Figure 5.9(a). The same argument

also holds for LSBCPC having sizes 32�32 and 64�64. When only clustered or

adjacent MBUs are present in the memory element as shown in Figure 5.6(a)

137

and (b) maximum number of adjacent erroneous bits that can be corrected us-

ing LSBCPC along the row and column of the cluster is given in Figure 5.9(b).

With the increase of the size of product code, code rate (CR) increases but at

the same time multiple iterations may be required to correct the error which in

turns increase latency of error correction. CR is the ratio of data bits to the data

bits plus redundant bits. For comparison of error correction coverage of di�erent

models as shown in Figure 5.9 maximum number of iteration is �xed to two.

Figure 5.10 gives error correction coverage of LSBCPC with di�erent sizes for

SPP based two level �ash memory. Two adjacent bits along the row in a page

matrix may be from a single cell or from two adjacent cells but two adjacent bits

along the column are always from two di�erent cells. Hence, along the column we

can use the component code in the same way as in clustered model as discussed

previously but along the row parity check matrix of component codes are modi�ed

as illustrated in equation 5.8 and 5.9 to correct multiple cells. Figure 5.10 shows

the number of adjacent cells that can be corrected by LSBCPC having di�erent

sizes in a SPP based two level �ash memory. Table 5.4 illustrates comparison

Figure 5.10: Adjacent cell correction coverage for single page programming based
two level �ash memory using LSBCPC having di�erent sizes.

between the proposed LSBCPC having di�erent sizes and product code developed

using component codes proposed by authors in [148] in terms of error correction

138

coverage, number of redundant bits, power, delay and area of decoder circuit.

In cluster error correction methodology error detection capability of component

codes are more important compared to error correction. Though authors in [148],

did not propose any speci�c product code that we can use directly, the proposed

linear codes can be used to develop a product code. Hence, out of the di�erent

linear codes described in [148] we have chosen (23,16), (39,32) and (72,64) to

form product codes whose performances are compared with the LSBCPC having

same dimension. (23,16) linear block code described in [148] can correct single

Table 5.4: Comparison of the proposed codes with other codes

Window
size

component
codes

Error
detection
capability

Error
correction
capability

Redundant
data

Total no. of
ones in Parity
Check Matrix

Maximum
no. of ones
in a row

Area
(µm

2
)

Decoder
Delay
(ps)

Power
(µW)

16x16

(23,16)
proposed
in [148]

Five adjacent
error and any
two bit error
with sharing
syndromes

Single
and

double
adjacent
error 7 50 9 783 337 264

(21,16)
proposed in
equation 5.3

Four adjacent
error without

sharing
syndromes No 5 23 6 693 255 210

(21,16)
proposed in
equation 5.3

Three adjacent
error and
almost

two errors
with distinct
syndromes No 5 23 6 693 260 210

32x32

(39,32)
proposed
in [148]

Three adjacent
error and any
two bit error
with sharing
syndromes

Single
and

double
adjacent
error 7 105 18 926 460 403

(38,32)
proposed in
equation 5.4

Five adjacent
error without

sharing
syndromes No 6 40 8 830 340 356

(38,32)
proposed in
equation 5.6

Four adjacent
error and

almost three
and two bit error
without sharing

syndromes No 6 40 8 850 390 367

64x64

(72,64)
proposed
in [148]

Three adjacent
error and any
two bit error
with sharing
syndromes

Single
and

double
adjacent
error 8 189 30 1623 530 722

(71,64)
proposed in
equation 5.5

Six adjacent
error without

sharing
syndromes No 7 72 13 1190 410 585

(71,64)
proposed in
equation 5.7

Five adjacent
error and almost

two, three
and four

bit error without
sharing

syndromes No 7 81 20 1298 450 634

139

and double adjacent bit errors and at the same time it can detect upto �ve

adjacent errors. During error detection (23,16) linear block code produces non

distinguishable syndrome vectors (i.e syndrome vectors generated by three, four

and �ve adjacent erroneous bits may overlap) for adjacent erroneous bits. Hence,

product code developed using this linear block code can correct cluster of size

5�5 but it may increase error correction time. Though the proposed LSBCPC

of dimension 16�16 can correct cluster error having maximum size of 4�4 using

clustered model and 3�3 using hybrid model it requires less redundant bits, error

correction time, total number of ones in parity check matrix and number of ones

in the heaviest row of the parity check matrix. This helps to implement decoding

circuit of LSBCPC with less area, delay and power compared to product code

developed using (23,16) linear block code as illustrated in Table 5.4. When the

size of the product code becomes 32�32 and 64�64 LSBCPC outperforms the

product code formed using the (39,32) and (72,64) linear block code not only in

terms of decoder delay, power consumption, area and overhead due to redundant

bits but also maximum error cluster that can be corrected.

Mean error to failure (METF) [93] is the number of errors that a memory

element can withstand in the presence of di�erent error correcting codes before

it starts to generate wrong data during the read operation. METF of LSBCPC

of di�erent sizes for both clustered and hybrid model and product code formed

using the linear codes described in [148] are shown in Figure 5.11. Hybrid model

outperforms clustered model of LSBCPC in terms of METF for all the memory

sizes. When the memory sizes are small error clusters are nearer to each other

and multiple clusters may be found within the same data set. Hence, for small

memory size LSBCPC with size 16�16 gives better result compared to LSBCPC

with size 32�32 which in turn gives better performance compared to LSBCPC

with size 64�64. With the increase of memory size distance between clusters

increase and situation is totally reversed and LSBCPC with size 64�64 gives best

result as illustrated in 5.11. Product code formed using (23,16) linear block code

gives better performance compared to LSBCPC having same size but hybrid

model of LSBCPC with sizes 32�32 and 64�64 outperform product codes of

same dimension formed using (39,32) and (72,64) linear block codes respectively

in terms of METF. In order to test the reliability of memory elements we have

140

Figure 5.11: Variation of METF with di�erent memory sizes

used another parameter known as mean time to failure (MTTF) which is de�ned

as the time for continuous error free operation of a memory unit and can be

de�ned by equation 5.11.

MTTF ��
METF

MemorySize �MBURate � Iteration
(5.11)

MBURate �� ParticleF lux �DeviceCrossSection (5.12)

DeviceCrossSection �� Numberofbitsinthememory � bitscrosssection (5.13)

Here we have modi�ed the MTTF parameter used by the authors in [93] by adding

iteration parameter in the denominator. MTTF has been calculated for various

memory sizes and is shown in Table 5.5. During error correction using multiple

iterations memory will not be available for data storage which reduces the MTTF

value. We have taken the value of bit cross section from [149] and used the value

of particle �ux as illustrated in [150].The particle �ux of intensity 10
5
s
�1
cm

�2
is

considered, iteration is �xed to three and value of bit cross section is taken as

2.74 � 10
�14
cm

2
. Values of METF are taken from Figure 5.11.

141

Table 5.5: MTTF in Days for di�erent memory sizes

MBU Rate Protection Techniques Memory size
2 Kb 8Kb 32 Kb 128Kb

2.74�10
�9

16�16 clustered model 178 111 51 21

16�16 hybrid model 268 136 58 24

Model proposed by Neale
et.al for 16x16 data 278 139 64 25

32�32 clustered model 165 116 55 23

32�32 hybrid model 350 166 77 28

Model proposed by Neale
et.al for 32x32 data 309 148 71 27

64�64 clustered model 144 126 59 25

64�64 hybrid model 398 186 84 31

Model proposed by Neale
et.al for 64x64 data 309 144 69 25

5.5.1 Cost Analysis

Here, we have de�ned a new metric called error correction coverage with enhanced

performance (ECCEP) to compare the overall performance of the LSBCPC of

di�erent sizes with the product code formed using the component code described

in [148] in terms of code rate, implementation overhead, error correction capability

and error correction time or latency. The new metric ECCEP can be de�ned as:

ECCEP ��
Correction Coverage � speedup � coderate

Cost
(5.14)

Where the cost can be calculated as:

Cost � Power � Area �Decoding latency

Cost � Power � Total number of one in parity check matrix�

Number of one in heaviest row of parity check matrix

(5.15)

Correction coverage is the maximum cluster size that can be corrected. Speedup

parameter indicates stages of the pipeline that is used in the hardware implemen-

tation of matrix multiplication for syndrome calculation during decoding of the

product code and here it is three. Decoding cost of an error correcting model

is calculated using area, delay and power consumption of the decoding circuit.

Power has been measured using the Xilinx Xpower tool. With the increase of

the number of one in parity check matrix area of decoding circuit increases as

142

mentioned by authors in [147]. Hence, in the case cost estimation area of the

decoding circuit is replaced by the total number of ones in the parity check ma-

trix. Decoding latency is the time required by the decoding circuit to detect and

correct the errors that can be de�ned by equation 5.16. Here we have �xed the

number of iterations to two and time consumed by one iteration can be replaced

by the number of ones present in the heaviest row of the parity check matrix as

mentioned by authors in [147].

Decoding latency � Number of iteration � Time consumed by one iteration

(5.16)

ECCEP for LSBCPC and product code developed using component code de-

Figure 5.12: Variation of ECCEP for di�erent size of LSBCPC and product code
formed using component code described in [148]

scribed by authors in [148] are illustrated in Figure 5.12. It is clearly seen that

LSBCPC gives better result compared to the product code formed using the block

code described in [148] for all the sizes. As clustered model can correct larger

cluster size compared to hybrid model LSBCPC with clustered model performs

better in terms of ECCEP compared to LSBCPC with hybrid model.

Authors in [93] de�ned another new metric known as cost per chip, which is

de�ned as the ratio of error free memory chip before fault injection to the number

of working memory chips after error correction. We have used the same metric for

143

Figure 5.13: Variation of Cost per chip with di�erent number of errors injected
per memory chip for LSBCPC and product code developed using block code
described in [148] having size 32�32

comparing the performances of di�erent error correcting models but not including

any redundant rows and columns, unlike to [93]. We have kept the number of

memory chips �xed to 1000 and size of each memory unit is taken as 1024�32 bits.

Variation of cost per chip is illustrated in Figure 5.13 for di�erent number of errors

injected into the memory chip for di�erent error correcting models keeping the size

of the product code �xed to 32�32. When there is no fault or only twenty faults

per chip on average, then all chips can be corrected by LSBCPC and product code

formed by the component code described in [148] and hence, the cost per chip is

one. With the increase in the number of faults per chip cost per chip gradually

increases as some memory chips remains faulty after error correction. The largest

cluster size that can be corrected using LSBCPC with hybrid model is less than

the clustered model but the number of error patterns that can be corrected by

hybrid model are higher than clustered model. Hence, error correction coverage of

hybrid model is always higher than clustered model against nonadjacent MBUs

whose occurrence probability is more than adjacent MBUs. As (39,32) linear

144

block code proposed by authors in [148] produces indistinguishable syndromes for

more than two erroneous bits, error correction coverage of product code developed

using this block codes are always less than LSBCPC. With the increase of faults

per memory chip LSBCPC with hybrid model shows best performance as shown

in Figure 5.13. When the number of injected errors are high i.e., 140 per chip

then the value of cost per chip is almost same for all the error correcting models.

5.6 Conclusion

This chapter illustrates development of a low complexity latency optimized prod-

uct code using simple linear block code as component codes and its performance

against clustered error mitigation in the MLC �ash memory. During the develop-

ment of product code we have applied a method on the component codes called

shortening of block code to detect adjacent MBUs generated by radiation. The

proposed approach has been tested for di�erent memory sizes, di�erent particle

�ux density and thus proving its e�ectiveness to detect and correct clustered

MBUs. The proposed product code consumes less area, power and has fast de-

coding circuit compared to the product code developed by the component block

codes described by the authors in [148]. At the same time parallel processing and

pipelining during syndrome computation reduces error correction time. In the

next chapter we are going to describe error mitigation techniques for con�gura-

tion memory of FPGA devices.

145

Chapter 6

Soft error mitigation in

Con�guration memory of FPGA

using HPC with selective bit

placement and Frame Interleaving

Radiation induced adjacent MBUs are very prominent in the con�guration mem-

ory of static random access memory (SRAM) based FPGA devices in the age of

ultra-large scale VLSI (ULSI) technology. When a charge particle having high

energy and low momentum hits the FPGA devices it damages a group of adjacent

logic cells and switches and forms the clustered error. In some critical applica-

tions like space exploration, satellite, radiotherapy where intensity of radiation is

high, there is a high probability that the con�guration memory of FPGA is being

a�ected by such type of clustered errors. Commonly used error mitigation tech-

niques in FPGA like TMR, CED and di�erent EDACs either have large overhead,

complex decoding circuit or are not very e�cient to correct a large number of

adjacent erroneous bits. Con�guration data of FPGA devices are composed of a

number of con�guration frames (CF) and there is a high probability that multiple

physically adjacent frames may be a�ected by clustered error. Hence, interleav-

ing between CFs are quite advantageous for mitigation of clustered error in the

con�guration memory of FPGA. In this chapter, a simple and e�cient error cor-

146

recting model combining Hamming product code (HPC) with frame interleaving

and selective bit placement (HPCFISBP) is proposed to correct adjacent MBUs

in the con�guration memory of FPGA without any modi�cation in traditional

FPGA architecture. The e�ciency of the proposed method has been compared

with HPC in terms of error correction coverage, error correction time, overhead

due to redundant bits and residual error.

6.1 Introduction

Recon�gurability, fast time to market, high logic density makes the FPGA devices

very lucrative to the embedded system designer though FPGAs are not very

robust against radiation. Soft errors, also known as transient errors are the

temporary malfunction that occur in solid state devices due to radiation. They

are not reproducible and sometimes lead to SEUs or MBUs. These SEUs and

MBUs prevent normal functionalities of FPGA devices. Di�erent FPGA vendors

like Xilinx, Altera, Microsemi developed radiation tolerant FPGA devices known

as space graded FPGA but they have less logic cells and are expensive. Hence,

instead of using space graded FPGAs we can consider commercial FPGAs, which

can be used with proper error mitigation techniques.

Con�guration memory constitutes the major memory share in an FPGA.

Hence, the con�guration memory is most likely to be a�ected by radiation more

as compared to data memory, which necessitates the role of con�guration mem-

ory protection. It is always expected that data in con�guration memory should

remain unchanged after a device is con�gured for a particular design while the

input data in data memory can change any time with the clock. In order to meet

the demands of modern high performance computing for computation of di�erent

complex algorithms, now a days FPGA devices are fabricated using denser inte-

gration schemes like 14 nm technology [151]. With the increase of memory density

chance of adjacent memory cells are being a�ected by alpha, beta or neutrons

and formation of clustered error increase many times [97]. Commonly used error

correcting techniques in FPGA like TMR,CED [152] are based on majority voting

and consume huge hardware resources, power and increase the chance of silent

data corruption (SDC) (bit �ipped but e�ect is not re�ected at the output of the

147

circuit [153]). Scrubbing with cyclic redundancy checking [82] and con�guration

readback [81] eliminate the probability of occurrence of SDC but these methods

require continuous access of external radhard memory that increases the system

cost and introduces delay.

Now a days, ECCs are used to mitigate the e�ect of MBUs arising from soft

errors in the con�guration memory of FPGA. Multi-bit error correcting codes like

RS, BCH, Euclidean Geometry Low Density Parity Check (EG-LDPC) code [154]

are required to correct large size clustered error. With the increase of error

correction capability number of redundant bits will also increase. Product codes

like HPC are quite e�cient against MBUs as discussed by authors in [89] as

it has simple decoding circuit and low overhead. The e�ciency of HPC starts

to deteriorate as the number of the adjacent erroneous bits increases. On the

other hand we can use methods like selective bit placement, interleaving along

with the ECC to enhance error correction capability without increasing number of

redundant bits. Hamming code along with selective bit placement and shortening

enhances the probability of detection and correction of adjacent erroneous bits as

shown by the authors in [155] but the method is most suitable for small number

of adjacent erroneous bits. In this chapter, we have proposed a new method

which combines HPC along with frame interleaving and selective bit placement

against adjacent MBUs keeping overhead due to redundant bits and decoding

circuit complexity same as in HPC used in [89].

6.2 Proposed Hamming Product code with frame

interleaving and selective bit placement

HPC is an e�cient multi-bit ECC in terms of BER performance and hardware

complexity. In HPC, data bits are arranged in a matrix and Hamming code is

applied along both row and column of the matrix to generate the redundant bits.

Hence, multiple erroneous bits in a single row or column in the matrix can easily

be corrected. If multiple erroneous bits are present along both row and column

in some cases they may be corrected using multiple iterations but it will increase

error correction time or latency as illustrated in [89]. In some other situation

148

multiple erroneous bits can not be corrected at all using HPC. In [89] authors

apply HPC on a set of data taking from a single CF so there is a fair chance

that a clustered error is fully in a single data matrix. Then HPC can not correct

this clustered errors. If the data matrix is formed taking data from multiple CFs,

erroneous bits of the cluster disperse into multiple data matrix and HPC can

easily correct the erroneous bits of that cluster. As the �rst step of the proposed

method interleaving among CFs is applied as shown in Figure 6.1. Available CFs

HI

VI

Figure 6.1: Frame Interleaving in the con�guration memory of FPGA

are arranged as a matrix shown in Figure 6.1 and frames having the same color

make one interleaving group. In Figure 6.1 horizontal interleaving depth (HI)

and vertical interleaving depth (VI) are chosen as four but it can be changed

to any other value. Next, a window is formed taking a number of CFs from a

interleaved group as per the size of the HPC. In Figure 6.2 CFs in a interleaved

group are shown where group is formed taking interleaving depth as two along

both horizontal and vertical direction. CFs in the interleaved group is arranged

in K number of horizontal groups and L number of vertical groups. In Figure 6.2

(7,4) Hamming code is used as component codes for HPC to illustrate window

formation so a window is formed taking sixteen CFs indicated by blue line. In

the next step, data bits having the same position in the CFs within a window are

read out and a data matrix is formed on which HPC is applied. Number of data

matrix that will be formed from a window depends on the number of data bits in

a CF. As for example in Figure 6.2 one data matrix is formed taking bits marked

149

with "*" and similarly another data matrix is formed with bits marked with "$"

from the CFs in the window. The bits marked with red color in Figure 6.2 are

corrupted by charge particles. The bit selection from the con�guration frames

Figure 6.2: Con�guration Frames of an interleaving group arranged into multiple
horizontal and vertical groups

within a interleaved group is done using a strategy known selective bit placement.

Next, we describe the selective bit placement strategy brie�y.

6.2.1 Selective bit placement strategy

Encoding and decoding of the data matrix using HPC can be done by multiplying

the data matrix with generator and parity check matrix of Hamming code respec-

tively. During decoding using Hamming code syndrome vectors are generated and

150

if the generated syndrome vector is null or contains all zero elements, then it can

be concluded that readback data is not erroneous. On the other hand nonzero

values of the syndrome give the positions of single bit error in the received word.

Here we have used Lexicographic matrix (similar to the parity check matrix used

by the authors in [87]), in which i
th
column contains binary value of i as shown

by the matrix in equation 6.1.

H �

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
\

0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 1 1 1 1 0 0 0 0 1

0 1 1 0 0 1 1 0 0 1 1 0

1 0 1 0 1 0 1 0 1 0 1 0

[________________]
(6.1)

Here we have described the selective bit placement using (12,8) Hamming code

so size of the parity check matrix is 4 � 12. A (12,8) Hamming coded data

having single bit error, when multiplied by the lexicographic matrix generate a

four bit syndrome vector, that gives the position of the error in the received

data. If more than one bit are erroneous, generated nonzero syndrome vectors

may mistakenly �ip a bit where the error does not occur at all. Maximum �fteen

di�erent syndrome vectors (without considering null vector) can be generated

using four bits. Here, data width is twelve bits after encoding by Hamming

code, so out of �fteen syndrome vectors only twelve syndromes are su�cient

to detect and correct single bit error. Authors in [87] showed that there are

some two bits errors which generate syndrome vectors whose values are greater

than twelve but less than �fteen. Hence, arranging the bits according to these

special combinations in a Hamming coded data, errors in two adjacent bits can

be detected successfully. If a simple parity bit is added to the (12,8) Hamming

code then the generated syndrome vector having value greater than twelve but

less than �fteen can detect maximum three adjacent errors. Table 6.1 shows how

the bits will be rearranged to detect two and three adjacent bits in (12,8) and

(13,8) hamming coded data respectively. Authors in [87] calculated that out of

eleven two adjacent bit errors in (12,8) Hamming coded data and three adjacent

bit errors in (13,8) Hamming coded data, nine can be detected using selective

bit placement strategy. In [87], authors listed such special combinations not only

for (12,8) and (13,8) Hamming code but also for Hamming code having di�erent

151

Table 6.1: Bit placement strategy in an one dimensional memory array

Bit placement to detect double adjacent
error using (12,8) hamming code

Bit placement to detect triple adjacent
error using (13,8) hamming code

bit position
before placement

bit position
after placement

bit position
before placement

bit position
after placement

1 1 1 6
2 12 2 8
3 2 3 1
4 3 4 7
5 6 5 11
6 8 6 3
7 7 7 5
8 9 8 9
9 4 9 2
10 10 10 4
11 5 11 p
12 11 12 10
- - p 12

values of n and m like (21,16), (22,16),(38,32) and (39,32) where m is length of

data and n is the length of encoded data.

Here we have used the same concept during the bit selection from the con�g-

uration frames in a interleaved group to form the data matrix. Bit selection from

the con�guration frame can easily be explained with the help of an example. Af-

ter hamming encoding data and parity bits are arranged as shown in Figure 6.3.

In the same way data and parity bits will be arranged along row and column of

1 2 3 4 5 6 7 8 9 10 11 12

P1 P2
P3 P4D1 D2 D3 D4 D5 D6 D7

D8

Figure 6.3: Arrangement of data and parity bit for (12,8) Hamming coded data

a 12 � 12 matrix after encoding by HPC (component codes are (12,8) Hamming

code) on a data matrix of size 8� 8 formed by taking bits from the con�guration

frames in an interleaved group as shown in Figure 6.4. As here we are describing

the example taking (12,8) Hamming code as component code of HPC window size

in the interleaved group will be 8�8. In Figure 6.4 Dij indicates bit of con�gura-

tion frame in the i
th
horizontal group and j

th
vertical group within a window, P

indicates parity bit generated using Hamming code on data bits and CP indicate

152

parity bits generated using Hamming code on parity bits (P). Now the selective

bit placement strategy described in Table 6.1 for data array can be applied on

matrix shown in Figure 6.4 along both row and column. The matrix shown in

Figure 6.4 is designated as A. Next, selective bit placement algorithm described

in algorithm 6 is applied to matrix A along both row and column in parallel and

arranged data and parity bits accordingly in a 12� 12 matrix designated as Are.

In algorithm 6, R indicates the number of rows and columns in A and Are, h

is the number of rows in the lexicographic matrix. After applying selective bit

Algorithm 6 Selective bit placement strategy in 2D-HPC

Require: A[R,R],H[h,R];
Ensure: Are[R,R];
1: Variable: E[R,R]=0,S1[h,R],S2[h,R],U1[1,R],U2[1,R];
2: Choose a memory element of size R�R where data is to be protected by HPC;
3: Randomly invert any two or three bits of E[R,R](Note: Generate di�erent

error patterns);
4: A[R,R]=A[R,R]h E[R,R];
5: Perform the operation S1[h,R]=H[h,R]�A[R,R];
6: HT= transpose(H);
7: Perform the operation S2[R,h]=A[R,R]�HT [R,h];
8: Convert each column of S1 into a decimal number and store into U1(1,R) and

each row of S2 into a decimal number and store them into U2(1,R)
9: i=1;j=1;code length=12;

10: while (i (R && j(R) do
11: if U1(1,i)' code length then
12: C1= Store the the combination of bits;
13: end if
14: if U2(1,j)' code length then
15: C2= Store the the combination of bits;
16: end if
17: i=i+1,j=j+1;
18: end while
19: E[R,R]=0; Go to step:2 until all two and three bit error patterns are gener-

ated;
20: Rearrange the column and row elements manually based on the information

in C1 and C2 and store the rearrange data into Are;

placement strategy described by algorithm 6 data bits are rearranged in matrix

153

Are as shown in Figure 6.5.

D11 D12 D13 D14 D 15 D16 D17 D18

D21 D22 D23 D24 D25 D26 D27 D28

D31 D32
D34D33 D36D35 D37 D38

D41 D42
D43 D44 D45 D46 D47 D48

D51 D52 D 54
D 53 D55 D56 D 58D 57

D 61 D62 D63 D64 D65
D66 D67 D68

D71 D72 D73 D74 D75 D76 D 77 D78

D81 D82 D84D83 D85 D86
D87 D88

P11
P12 P13 P14

P21
P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44

P51 P52 P53 P54

P61
P62 P63 P64

P81 P82 P83
P84

P71 P72 P
73

P74

CP11

CP12

CP13

CP14

CP21

CP22

CP23

CP24

CP31

CP32

CP33

CP34

CP41

CP42

CP43

CP44

CP51

CP52

CP53

CP54

CP61

CP62

CP63

CP64

CP71

CP72

CP73

CP74

CP81

CP82

CP83

CP84

CP91

CP92

CP93

CP94

CP101

CP
102

CP103

CP104

CP
111

CP
112

CP113

CP114

CP121

CP
122

CP
123

CP
124

Figure 6.4: Arrangement of data and parity bits in a data matrix of size 12�12
before selective bit placement

Now we are going to describe how this rearrangement helps to detect and

correct di�erent error patterns in data matrix. Algorithm 7 is used to detect

and correct errors in corrupted data stored in A
¬

re and give corrected output Ac.

Here, Rr is the matrix of size 12�4 and contains syndrome vectors generated

due to the row elements in A
¬

re. Similarly, Rc is the matrix of size 12�4 and

contain syndrome vectors generated due to the column elements in A
¬

re. C1 and

C2 are number of nonzero syndrome vectors in Rr and Rc respectively. Yk and

Xk represent the nonzero syndrome vectors in Rr and Rc respectively where k

can vary from 1 to 12. As the redundant bits in 1
st
, 3

rd
, 6

th
and 9

th
row in A

¬

re

are protected by only Hamming code along the column not by Hamming code

using row operation, syndrome vectors for these rows in Rr matrix can not be

used for decoding purpose and we forcefully make them zero. Simple parity

bit is added with HPC to enhance error correction capability in data matrix.

Rearrangement of bits in the data matrix using selective bit placement strategy

for HPC with parity bit is shown in Figure 6.6. Algorithm 7 can also be used

for error detection and correction for data matrix shown in Figure 6.6. The only

di�erence is that value of R becomes 13 and instead of two adjacent erroneous

bits three adjacent erroneous bits will generate syndrome vectors having the value

154

Algorithm 7 Error Detection and correction in data matrix

Require: A're[R,R],H[h,R];
Ensure: Ac[R,R],Zout;
1: Variable:Rr(12,4),Rc(12,4),C1, C2, Yl, Xk, Imth, N ;
2: i=1;Zout=0;N=0;
3: Rr �A're[R,R]� transpose(H[h,R]);
4: Rc � transpose(A're[R,R])� transpose(H[h,R]);
5: C1= Number of nonzero syndrome vectors in Rr;
6: C2= Number of nonzero syndrome vectors in Rc;
7: while (((C1 j0)or(C2 j0))&&(i (Imth)) do
8: if ((C1 � 0)&&(C2 ' 1)) then
9: if (N=0) then

10: Errors are at 1
st
, 3

rd
, 6

th
, 9

th
row only which can be detected only

by nonzero syndrome vectors in Rc but can not be corrected;Zout=1;
11: end if
12: if (N=1) then
13: Error in any one row out of 1

st
, 3

rd
, 6

th
, 9

th
row which can be cor-

rected by hamming code along the column direction;N=0;
14: Make the corresponding row in Rc zero;
15: end if
16: end if
17: if ((C1 � 1)&&(C2 � 1)) then
18: Single bit error occur in A're and it will be corrected;
19: end if ;
20: if ((C1 � 1)&&(C2 ' 2) then
21: if ((Yl ' 13)&&(Xk ' 13)&&(Xm ' 13)) then
22: There is a CMBU of size 2�2 is detected. Then bits at the inter-

section of l
th
row and and k

th
and m

th
columns in A're will be corrected;

23: N=1;Make the corresponding row in Rr and Rc zero.
24: end if
25: if ((Yl ' 13)&&(Xk (12)&&(Xm (12)) then
26: Bits at the intersection of l

th
row and and k

th
and m

th
columns in

A're will be corrected;
27: N=0;Make the corresponding row in Rr and Rc zero.

155

28: end if
29: end if
30: if ((Yl (12)&&(More than Two rows of Rc having nonzero syndrome
values)) then

31: Bits overlapped by l
th

row, and columns for which Rc gives nonzero
syndrome values will be corrected in A're;Make the corresponding row in Rr

and Rc zero.
32: end if
33: if ((C1 ' 2)&&(C2 � 1)) then
34: if (Xk ' 13)&&(Yl ' 13)&&(Ym ' 13) then
35: There is a CMBU of size 2�2 is detected. Then bits overlapped by
k
th
column and l

th
and m

th
row in A're will be corrected;

36: N=1;Make the corresponding row in Rr and Rc zero;
37: end if
38: if (Xk ' 13)&&(Yl (12)&&(Ym (12) then
39: Bits overlapped by k

th
column and l

th
and m

th
row in A're will be

corrected;
40: N=0;Make the corresponding row in Rr and Rc zero;
41: end if
42: if ((Xk (13)&&(More than Two rows of Rr having nonzero syndrome
values)) then

43: Bits overlapped by k
th
column, and rows for which Rr gives nonzero

syndrome values will be corrected in A're;Make the corresponding row in Rr

and Rc zero;
44: end if
45: end if
46: if ((C1 ' 2)&&(C2 ' 2)) then
47: Bits overlapped by rows and columns for which nonzero syndrome vec-
tors are generated will be corrected in A're;

48: end if
49: C1= C1-1,C2= C2-1;
50: Ac= A're;
51: Rr � A'[R,R]� transpose(H[h,R]);
52: Rc � transpose(A'[R,R])� transpose(H[h,R]);
53: i <= i + 1;
54: end while

156

D11 D12D13 D14 D 15 D16 D17D18

D21 D22D23 D24 D25 D26 D27D28

D31 D32D34D33 D36D35 D37D38

D41 D42
D43 D44 D45 D46 D47 D48

D51 D52D 54D 53 D55 D56D 58 D 57

D 61 D62D63
D64 D65 D66

D67D68

D71 D72D73 D74
D75 D76 D 77D78

D81 D82D84D83 D85 D86 D87D88

P11 P12 P13P14

P21 P22
P23P24

P31 P32 P33P34

P41 P42 P43 P44

P51 P52 P53P54

P61 P62 P63P64

P81 P82 P83
P84

P71 P72 P
73P74

CP11

CP12

CP13

CP14

CP21

CP22

CP23

CP24

CP31

CP32

CP33

CP34

CP41

CP42

CP43

CP44

CP51

CP52

CP53

CP54

CP61

CP62

CP63

CP64

CP71

CP72

CP73

CP74

CP81

CP82

CP83

CP84

CP91

CP92

CP93

CP94

CP101

CP
102

CP103

CP104

CP
111

CP
112

CP113

CP114

CP121

CP
122

CP
123

CP
124

Figure 6.5: Arrangement of data and parity bits in a data matrix of size 12� 12
after selective bit placement

greater than twelve. In Figure 6.6, pr and pc are parity bits added with HPC

along the row and column respectively.

Error detection and correction in data matrix during decoding is described

using some examples. Di�erent kinds of error pattern are shown in the Figure 6.5

and Figure 6.6, but it is assumed that they have occurred at di�erent instance.

In Figure 6.5, clustered error of size 2�2 at bit positions D44, P44, D54 and D55

(marked by red color) generate syndrome vectors having the value greater than

twelve at 7
th

and 8
th

row in both Rr and Rc. From these informations errors

at these four bits can be easily corrected. Along with the clustered errors our

proposed model is also able to correct multi-bit errors at discrete locations as bits

at positions D68, D63, D78 and D73 marked by green color in Figure 6.5. Here 10
th

and 12
th
row in Rr and 2

nd
and 5

th
row in Rc generate nonzero syndrome vectors

having the value less than twelve and the erroneous bits will be corrected by the

decoding algorithm 7.

Sometimes multiple iterations may be required to correct all of the erroneous

bits. As for example four erroneous bits at CP61, CP71, P84 and D84 in Figure 6.5

generate syndrome vectors having the value greater than twelve in second row

of Rr and 6
th

and 7
th

row in Rc. In this case, �rst iteration corrects P84 and

D84 and in the second iteration CP61 and CP71 will be corrected using the Ham-

157

D11 D12
D13 D14 D 15 D16D17 D18

D21 D22D23 D24 D25 D26D27 D28

D31 D32D34
D33 D36D35D37 D38

D41 D42D43 D44 D45 D46D47 D48

D51 D52D 54D 53 D55 D56 D 58D 57

D 61 D62D63 D64 D65
D66D67 D68

D71
D72D73 D74 D75 D76D 77 D78

D81 D82D84D83 D85
D86D87 D88

P11
P12 P13P14

P21 P22 P23P24

P31 P32 P33P34

P41
P42 P43P44

P51 P52 P53
P54

P61 P62 P63P64

P81 P82 P83P84

P71 P72 P
73P74

CP11

CP12

CP13

CP14

CP21

CP22

CP23

CP24

CP31

CP32

CP33

CP34

CP41

CP42

CP43

CP44

CP51

CP52

CP53

CP54

CP61

CP62

CP63

CP64

CP71

CP72

CP73

CP74

CP81

CP82

CP83

CP84

CP91

CP92

CP93

CP94

CP101

CP
102

CP103

CP104

CP
111

CP
112

CP113

CP114

CP121

CP
122

CP
123

CP
124

Pc1
Pc2

P
1r

2
Pr

Pc3
Pc4

Pc5 Pc6
Pc7

Pc8 Pc9
Pc10

Pc11 Pc12

Pr 3

Pr 4

Pr 5

Pr6

Pr
7

Pr8

P rc

P rc 1

P rc 2
P rc 3

P rc 4

Figure 6.6: Arrangement of data and parity bits in a data matrix of size 13�13
after selective bit placement

ming code along the column direction. Larger cluster size (as for CMBU of

size 3�3) can also be corrected by the proposed algorithm. Erroneous bits at

P63, D66, D62, P23, D26, D22, P73, D76 and D72 generates three nonzero syndrome

vectors in Rr and three nonzero syndrome vectors in Rc. Bits overlapped by

row and column having nonzero syndrome vectors can be easily corrected but

it may also increase the chance of mis-correction. Using the selective placement

strategy described above, some group of three erroneous bits generate zero syn-

drome vectors so they can not be detected. Clustered error at bit positions

CP11, CP21, CP31, P81, D88, P82, CP12, CP22 and CP32 will generate nonzero syn-

drome vectors at 2
nd

row in Rr and 1
st
, 2

nd
and 3rd row in Rc. Using these

information errors at P81, D88, P82 can be corrected only. But the other erroneous

bits remain uncorrected.

HPC with parity can detect and correct this type 3�3 adjacent multi-bit errors

as illustrated in Figure 6.6. Errors at bit positionsD33, P34, P31, CP14, CP24, CP34,

CP11, CP21, CP31 generate syndrome vectors with values greater than twelve in

1
st
, 2

nd
and 3rd row in Rr, and Rc which can correct the clustered errors of size 3�3

using HPC with selective bit placement.Similarly, 3�3 CMBU at bit positions

D45, P42, P43, D75, P72, P73, D15, P12, P13 can easily be corrected using HPC with

parity. In algorithm 7, Zout output will be high when error is detected but can

158

not be corrected. To avoid error accumulation due to residual errors, golden

copy of the con�guration data stored in a secondary or �ash memory that can be

downloaded when Zout is high.

In this way selective bit placement helps to detect and correct multiple ad-

jacent erroneous bits in a data matrix. If in a single iteration errors in the

interleaved group can not be corrected multiple iterations can be used. Opti-

mizing correction coverage and correction time number of maximum iteration or

iteration threshold (Ith) would be set by the user. RHi and RV j in Figure 6.2

contains redundant bits generated due to Hamming code along horizontal and

vertical direction in HPC on a data set. Overhead due to the redundant bits

of our proposed method remain same with that of the method proposed by au-

thors in [89] and only decoding circuit complexity may increase marginally due

to interleaving logic. Physically the redundant bits will be stored in a RAM on

the FPGA board. Hence, frame interleaving (helps to place physically adjacent

frames into multiple groups) and selective bit placement (disperse multiple adja-

cent erroneous bits in a con�guration frame into multiple data matrices) along

with HPC helps to correct di�erent clustered errors shown in Figure 6.2 that

are not possible with traditional HPC used by authors in [89]. Each step of our

proposed algorithm named as HPCFISBP is described in algorithm 8.

159

Algorithm 8 HPC with Frame interleaving and selective bit placement Algo-
rithm
Require: Erroneous con�guration frames, Ith
Ensure: Corrected or partially corrected con�guration frames
1: After read back the con�guration data from con�guration memory arrange

the available con�guration frames along columns (1 to M) and rows (1 to N)
of a matrix as shown in Figure 6.1;

2: According to value of HI and VI, con�guration frames are chosen from the
rows and columns of the matrix and forms a interleaving group as shown in
Figure 6.2;

3: Arrange the con�guration frames of an interleaving groups into multiple hor-
izontal (GROUPH) and vertical groups (GROUPV);

4: Based on the size of the data �eld of HPC �xed the window size as indicated
by blue square in Figure 6.2. For example if (n,k) Hamming code is used as
component of HPC then window size is k�k;

5: Prepare a data matrix taking data from all con�guration frames within a
window according to the selective bit placement strategy.

6: while �I $ Ith� do
7: Apply HPC on the data set prepare at step-5 and correct the erroneous

bits;
8: Generate Syndrome vectors;
9: if (syndrome vectors are non zero) then

10: I= I + 1;
11: end if
12: if (syndrome vectors are zero) then
13: I=Ith;
14: end if
15: end while
16: Go to step-5 and form another data matrix;
17: Go to step-4 and performs the same operation until all the con�guration

frames within an interleaving groups are covered.
18: Go to step-2 and perform same operations on another group.

6.3 Hardware implementation of HPCFISBP

Application hardware, placed into the con�guration area of the FPGA consists of

few sub-components, which may be stated as standard or custom IPs. Bit �le of

Kintex-7 FPGA contains 91,548,896 bit which are arranged in 28326 con�guration

frames. Each frame consists of 3232 bits that are arranged in a matrix having 101

160

rows and 32 columns. Here we have used Slave SelectMAP interface [156] with 32

bit bus width to readback data from con�guration memory. Here custom build

slave interface controller is written that control interface signal of selectMAP

port as shown in Figure 6.7. After power on reset RDWR and CSI_B signals go

CF

CF

CFCF

CF CFCF

CF CF

Configuration
 Memory

Select
 MAP

Select
 MAP
Inter-
 face

 Rx
FIFO

 Tx
FIFO

Dual Port
 RAM1

Horizontal
syndrome
Computation

 Vertical
 syndrome
Computation

Store Hori-
zontal Parity

 Data
Correction

Dual Port
 RAM2
(Data Matrix
 formation)

(Window
formation)

Slave
Inter-
 face

 Slave
Interface
Controller

Master
Select-
 MAP
Contr-
 oller

Secon-
 dary
Memory

Counter

HPC Module

Static Area

Configuration Area

DONE

INIT_B

CSI_B

Interleaving logic

Logic for bit
selection
 from confi-
 guration
 Frame

Store Vert-
ical Parity

 Error
Position
Locator

RDWR

Figure 6.7: Hardware implementation of HPCFISBP

low and bus width detection procedure will be started. After the bus width is

con�rmed loading of bit stream will be started. The �rst step of bit stream loading

is synchronization and in this step a special synchronization word (0xAA995566)

will be sent to the con�guration logic that prepare the device for upcoming data

and aligns the con�guration data with the internal con�guration logic. Any data

before synchronization in data pin of selctMAP is ignored except bus width auto

detection sequence. In the next step, device ID will be checked that prevents

con�guration bit stream generated for a device to be downloaded into another

device. In the third step, con�guration data will be loaded into con�guration

memory and device starts to calculate CRC value from the con�guration data.

After loading of data is completed bit stream generate checkCRC command along

with expected value of CRC. If the expected CRC value dose not match with

calculated CRC value INIT_B signal goes high to abort the process and bit

stream loading process will fail. On the other hand if the expected CRC value

matches with the calculated CRC value DONE signal goes high and some special

startup sequence will be sent to the device. Steps for bit �le loading is shown using

a �ow diagram in Figure 6.8 and mentioned as con�guration phase. for details

meaning of each register and signal used in �ow diagram user can consult [156].

161

START
Generate
 Bit File

Calculate FEC
 using HPCFI

Power-up
 Device

Clear Configur-
ation Memory

 Sample
mode pins

Synchronization
 and Device ID
 check

Load configuration
data and CRC check

 startup
sequence

system
active

Count=
Count +1

count > value of
 timer

NO
Start
Read
back

 Bus width
detection and
synchronization

send shutdown
command and
 NOOP

Write RCRC
command to
CMD register
followed by
 NOOP

Done goes
 low

Write NOOP

NO

Yes

Yes

Write RCFG
to CMD reg-
ister and st-
art frame
address to
 FAR

 Read
 FDRO
 Register
 packet
 header

Write 32
dummy
words to
flush
read buffer

Read FDRO
register
 through
 selectMAP
 interface

 Write
 START
command
and NOOP

Write RCRC
command
and NOOP

 Write
 DESYNC
command

Write
NOOP

Done goes
 high

Correction
 of faulty
 bits

Exceed Correction
 capacity?

YesDownload
 original
 bit file

NoDownload
corrected
 bit file

Run Phase

Configuration Phase

Figure 6.8: Hardware implementation work-�ow for HPCFI

After the device is activated a counter starts and when the counter value

reaches a certain threshold read back process will start. There are di�erent regis-

ters in the con�guration memory having speci�c address. Some of them are read

only, some of them are used only for writing purpose and some of them are used

both for reading and writing purpose. Some of the important registers used in

the design are Frame data register input (FDRI) used for writing the con�gura-

tion data, Frame data register output (FDRO) used for reading the con�guration

data and Frame address register (FAR) used to give the address of the register

to be read or write. Steps for read back of the data is shown in Figure 6.8 and

designated as run phase.

Here con�guration data will be readback continuously with some time interval

and written into the Rx FIFO. Interleaving logic selects con�guration frames from

Rx FIFO and write into dual port RAM1 dedicated for window selection. Then

162

logic for bit selection selects data bit from RAM1 and write them into dual port

RAM2. In the next step HPC module read data from RAM2 and send them into

the horizontal syndrome computation and vertical syndrome computation block

simultaneously as shown in Figure 6.7. Based on the calculated syndromes error

positions in a data matrix can be detected and corrected. If there is no others

erroneous bits remain in the data matrix data will be written back into the

TxFIFO from where it will be sent to con�guration memory. Otherwise data will

be written into RAM2 again and will be used for syndrome computation for next

iteration. Slave interface controller is an interface between the selectMAP and

master. This interface can be Advanced eXtensible Interface (AXI), Fast Simplex

Link (FSL) and Processor Local Bus (PLB) but here the link is custom as custom

selectMAP controller is used as master. When the proposed HPCFISBP is unable

to correct all erroneous bits in the con�guration data golden copy stored in the

secondary memory will be downloaded into the con�guration memory through

selectMAP master controller.

6.4 Result and Performance Analysis

Proposed fault correcting model is implemented for seven series FPGA using Xil-

inx ISE 14.5 platform and tested using behavioral simulations. An application

design has been used to generate the bit �le. Figure 6.9 compares the perfor-

mance of the proposed HPCFISBP code with the other existing codes in terms

of hardware complexity and BER. During the BER calculation input signal to

noise ratio is taken as 4dB [89]. Existing multibit error correcting codes with

good error correcting performance like LDPC, Turbo, RS product code consume

very high hardware resources whereas Hamming code and HPC [89] consume

fewer hardware resources, but their BER performance is not satisfactory. Our

proposed HPCFISBP code shows good BER performance compared to Hamming

code and HPC with slightly higher hardware complexity comapred to HPC as

shown in Figure 6.9. Figure 6.10 (a) indicates that the error correction cover-

age of our proposed model (HPCFISBP) outperforms model proposed by authors

in [89] for the di�erent number of injected errors in the con�guration memory.

Not only clustered error if discrete MBUs present along same rows and columns

163

Figure 6.9: Hardware Complexity vs BER for di�erent ECC

HPC model in [89] cannot rectify them. but HPCFISBP can correct these types

of MBU. As there is more chance of non-repairable MBUs by HPC at higher val-

ues of injected faults, there is a notable improvement in error correction coverage

of HPCFISBP over HPC for higher values of injected errors in the con�guration

memory. For both single and double iterations HPCFISBP gives much better

performance compared to HPC as illustrated in Figure 6.10 (a). Residual errors

(a) (b)

Figure 6.10: (a) Comparison of error correction coverage of HPCFISBP with
HPC proposed by authors in [89] (b) Residual errors in con�guration memory at
di�erent time instance after error correction by HPC and HPCFISBP

are the errors remain in con�guration memory after error correction by the error

164

correcting models. To test the performance of HPCFISBP and HPC for residual

errors we have injected 500 errors in every second and then apply HPCFISBP and

HPC with Ith as two. With the increase of Ith residual errors decrease but at the

same time error correction time will increase. Here we have set Ith as two but it

can be tuned to any value for other applications. Figure 6.10 (b) illustrates that

residual errors are less in con�guration memory when corrected using HPCFISBP

compared to the case when corrected by HPC.

Variation of error correction coverage and error correction time with di�er-

ent interleaving depth is shown in Figure 6.11. Here we have kept horizontal

and vertical interleaving depth same. With the increase of interleaving depth

number of interleaving groups increase that will increase error correction time

steadily. This is because error correction operation will be performed on one in-

terleaving group at a time. Sometimes charge particles may damage the adjacent

con�guration frames so initially with the increase of interleaving depth error cor-

rection coverage will increase. In this situation, multiple erroneous con�guration

frames are in di�erent interleaving groups that enhances error correction cover-

age. Figure 6.11 shows that error correction coverage of HPCFISBP increases

Figure 6.11: Variation of error correction coverage and error correction time with
di�erent interleaving depth

steadily up to a certain interleaving depth (Here it is equal to ten). When in-

terleaving depth increases further multiple erroneous con�guration frames which

are physically far apart come within the same window in a interleaving group. It

165

degrades error correction coverage of HPCFISBP. In our design, if values of HI

and VI increase beyond twelve, error correction coverage of HPCFISBP deterio-

rates slightly. Changing interleaving depth from ten to twelve will improve error

correction coverage marginally. Hence, optimizing both error correction cover-

age and error correction time, proper interleaving depth is ten for this design as

clearly seen from Figure 6.11. Table 6.2 shows the variation of error correction

coverage due to the variation of HI and VI.

Table 6.2: Variation of error correction coverage with interleaving depth

VI=2 VI=4 VI=6 VI=8 VI=10 VI=12 VI=14
HI=2 40% 51% 60% 73% 82% 85% 89%
HI=4 45% 59% 70% 77% 87% 92% 95%
HI=6 51% 65% 78% 87% 90% 92% 96%
HI=8 55% 67% 78% 89% 92% 95% 98%
HI=10 68% 75% 89% 93% 95% 98% 99%
HI=12 70% 79% 87% 93% 100% 97% 99%
HI=14 74% 78% 89% 93% 99% 100% 98%

Table 6.3 compares our proposed code with di�erent existing codes in terms

of error correcting performance, latency, decoding circuit complexity, resource

utilization, power consumption and redundant data. Table 6.3 is prepared using

multiple iterations over 32�32 memory unit keeping the code rate constant. As

size of each con�guration frame is 101�32 we have chosen memory unit of size

32�32 for preparing the table. For HPCFISBP interleaving depth is taken as four.

Due to the random nature of MBU, a range of the error correcting capability for

di�erent error correcting codes is given instead of exact value. In Turbo code, the

number of redundant data depends on the number of shift registers(v), modulo

two adders (K) and input data of length L bit. Here values v,K and L are taken

as 2,2 and 1024 bit respectively. It is observed that in terms of error correction

LDPC and turbo code give the best performance, but their decoding complexity

and overhead are very high. Though overhead of hamming code is small, its er-

ror correcting performance is not good. BCH and HPCFISBP require the same

amount of redundant data to protect 32�32 memory unit, but HPCFISBP gives

better error correcting performance compared to BCH code. It can also be seen

that HPCFISBP provides far better error correcting capability compared to HPC

166

Table 6.3: Comparison between Proposed ECC with the other existing ECC

BCH Code
(127,71) [157]

Hamming Code
(Xilinx ECC IP) [158] LDPC [84] Turbo [72] HPC [89] HPCFISBP

ECC performance
between 30%
and 50% <30% >95% >95%

between 60% and
90%

between 80% and
98%

Latency Low Very Low Moderate Long Moderate Moderate
Decoding
Complexity Moderate Low High High Low Low

Overhead
(Redundant bit) 840 768 1024 2v(L �K)�L 882 882

Resource
Utilization

2349
(#Slice Reg.) 1282(# Slice Reg.) 1750k (# Gate) 4146 (# Slice Reg.) - 1152 (#Slice Reg.)

power(mw) - - 690 - - 150.7

keeping same overhead and almost same decoding circuit complexity. Selection

of data matrix size or component Hamming code for HPC plays a vital role in

error correcting performance and error correction time as shown in Figure 6.12.

With the increase in data matrix overall error detection and correction time in a

memory element will reduce but at the same time error correcting performance

of both HPC and HPCFISBP will degrade and the e�ect is more predominant

in HPC compared to HPCFISBP. The reason behind is that adjacent MBU of

di�erent sizes can not be corrected by HPC in a single iteration and some of them

can not be corrected when it will be in a single data matrix. To correct these

type of error either multiple iterations are required or window size need to be

reduced which in turn increases error correction time. On the other hand, these

error patterns can be corrected easily by HPCFISBP using single or less umber

of iteration compared to HPC and by dispersing the erroneous bits into multiple

data matrices. Though, with the increase in the data matrix size, number of

data matrix within a interleaved group is reduced but error detection/correction

time within a interleaved group will increase due to increase in iteration num-

bers. Hence, initially error correction time will decrease with the increase of the

data matrix size but after a certain data matrix size, error correction time for a

interleaved group become almost unchanged as shown in Figure 6.12.

167

Figure 6.12: Variation of error correction time and error correction capability
with size of data matrix

6.5 Conclusion

In this work, we have proposed a novel error correcting model integrating low

complexity HPC and frame interleaving with selective bit placement strategy to

correct MBUs arising due to soft errors in the con�guration memory of FPGA.

The proposed error correcting models give good error correcting performance

compared to HPC without sacri�cing in terms of overhead due to redundant

bits and decoding complexity. We have discussed details performance analysis of

the proposed method by varying interleaving depth and size of the component

Hamming code of HPC. We have also proposed hardware implementation of the

proposed method with continuous con�guration memory read and write through

selectMAP interface. In future, we are planning to use partial recon�guration

along with the proposed model to enhance error correction coverage.

168

Chapter 7

E�cient Dynamic Priority Based

Soft Error Mitigation Techniques

For Con�guration Memory of

FPGA Hardware

Con�guration memory of FPGA devices are very susceptible to charge particles

present in the cosmic ray or generated during di�erent laboratory experiments.

Modern FPGA devices use di�erent multi-bit ECC to mitigate the e�ect of soft

error arising due to radiation. With the increase of the error correcting capability

decoding circuit complexity of ECC also increases. In this chapter, we have pro-

posed e�cient single bit as well as multi-bit error correcting methods using simple

parity equations and Erasure code. At the same time we have separated error

detection and correction process that not only enhances error correction coverage,

but also reduces error correction time and complexity of decoding circuit. Use of

DPR along with a simple hardware scheduling algorithm based download man-

ager helps to perform the error correction in the con�guration memory without

suspending the operations of the other hardware blocks. We propose a �rst of its

kind methodology for novel transient fault correction using e�cient ECCs with

hardware scheduling for FPGAs. We have measured di�erent parameters like

fault recovery time, power consumption, resource overhead and error correction

169

e�ciency to estimate the performance of our proposed methods.

7.1 Introduction

With the development of fabrication technology, solid state devices are gradually

reducing in size, hence node voltages of CMOS transistor also reduces. If the

charge injected by incident particles goes above a certain threshold (also known

as critical charge [159]) it can create SBUs and MBUs in di�erent embedded

devices like FPGAs which tremendously a�ect the reliability of the devices in

the �eld. Present research outcomes [138] show that with the increase of circuit

density, multiple number of adjacent CMOS transistors in FPGA devices are

a�ected by low momentum and highly energized incident charge particles.

An MBU occurs when charged particles hit the memory and a�ects sensitive

zones of multiple cells (mainly channels of MOS transistors). With the shrinking

of the transistor size, depletion region of one transistor may span into multiple

transistors which increases the probability of charge sharing between the neigh-

boring circuit nodes. The charge sharing may create MBUs in the adjacent mem-

ory cells. To study the occurrence probability of SBUs and MBUs, a particle

strike simulation is conducted using a well-known simulation tool called Geant-

4 [160]. A graph is plotted based on simulation results as shown in Figure 7.1

which illustrates how cells are damaged when radiation from neutron source of

di�erent energies (1 GeV, 5 GeV, and 10 GeV) hit a memory element designed for

40 nm technology. It is observed from this graph that above 50% of soft errors in

memory are multi-bit in nature. Figure 7.2(b) (taken from [97]) also shows the

occurrence probability of MBUs for 45 nm technology. As Kintex FPGA, used in

our experiment is 28 nm technology based device it is expected that probability of

occurrence of MBUs is more in Kintex FPGA compared to 40 or 45 nm technol-

ogy based devices. The number of the memory cells in the con�guration memory

of FPGAs that will be a�ected by radiation depend on radiative �ux density.

Authors in [161] showed that soft error rate (SER) increases steadily with the

elevation from the ground. Similarly, con�guration memory of FPGA devices

will be a�ected tremendously when they are used in di�erent HEP experiments

like ALICE [162], CBM [80] Experiment.

170

Figure 7.1: Occurrence probability of di�erent MBU and SBU (indicated by '1'
along x-axis) patterns for di�erent Neutron energy

The most common methods of error mitigation in con�guration memory of

FPGA devices are TMR, CED, readback or blind scrubbing and multi-bit ECC.

The traditional error correction methods either have large overhead and logic

resources or use complex decoding circuit. Authors in some recent literatures tried

to use simple block code based ECC like matrix code (MC [93]) against MBUs

though they are not su�cient when SER is very high. Optimizing decoding circuit

complexity and error correction capability we have proposed simple parity based

and erasure coding based error correcting models that provide simple decoding

circuit with large error correction coverage. In order to reduce error correction

time and decoding circuit complexity further we have separated error detection

and correction process as introduced by Ebrahimi et.al in [97].

Error detection and correction on full con�guration memory at a time using

di�erent ECC increase system latency. At the same time downloading of bit �le

after error correction stops the system operations momentarily that are not ac-

ceptable for real time applications. To alleviate these e�ects, DPR with hardware

scheduling technique can be used with EDAC where ECC corrects only a partic-

ular portion of the con�guration memory at a time and download the corrected

portion of the bit �le without hampering the normal system operation involving

the other blocks in the design. Using partial recon�guration, a hardware design

is partitioned into a number of partially recon�gurable (PR) region as shown in

Figure 7.2(a). All PR regions will not be in the active state at the same time

171

Pr1
Pr2

Pr
i

Prn

(b)(a)

Figure 7.2: (a) Partitioned of con�guration memory into n number of regions (b)
MBU distribution in 45 nm SRAM based FPGA (Taken from [97]

when a hardware circuit with partial recon�guration runs on the FPGA. The PR

region which is not in the active state can be assumed in the idle state. As for

example i
th
PR region (PRi) in Figure 7.2(a) is in the idle state at a particular in-

stant. If reading, error correction and downloading of PRi can be done within its

idle state, then it will not hamper the normal function of the system. It will give

better performance if the PR region for error correction can be selected according

to some priority which is calculated using a prede�ned scheduling algorithm. This

procedure enhances overall system performance and reduces the recon�guration

latency. In some present literatures like [98, 102] fault detection and correction

is integrated with hardware scheduling and partial recon�guration but the pro-

posal raised in this chapter comes from a di�erent aspect where fault correction

priorities of di�erent hardware blocks are calculated from the task period and its

criticality.

In this paper our key contributions are:

� An e�cient erasure code and a parity based low complexity ECCs are used

to mitigate the e�ect of soft errors in the con�guration memory of FPGAs.

In comparison with the other existing design, the proposed codes have less

complex decoding circuits and give better error correcting performances.

� To reduce recon�guration time and power consumption we have used DPR

along with the proposed fault correcting models.

172

� A novel priority based bit �le downloading algorithm is also proposed which

prevents suspension of the system operation during downloading of partial

bit �le.

7.2 Proposed Modi�ed Matrix Code Algorithm

Modi�ed matrix code (MMC) is a simple parity based ECC. MC proposed by

the authors in [93] corrects the erroneous data using Hamming code along the

row and parity code along the column of a matrix. The proposed method is

called modi�ed matrix code since the data to be corrected are arranged in a

matrix on which parity equations are used along both the diagonals and vertical

directions. MC can correct upto two bit errors in any row and only one bit error

in other rows. When number of error is more than two, error detection and

correction capability of MC is less than 100% as shown in Figure 7.3 however

error detection capability of MMC is always 100%. MMC can correct any three

bit errors with 100% e�ciency but correction of more than three bit errors depend

on the error pattern. It is justi�ed by our simulation of
n�n

C3 error combinations

in a n�n matrix as shown in Figure 7.3. Code rates of MC and MMC are almost

same. As for example, in 64 bit window, code rates of MC and MMC are 0.57

and 0.58 respectively. Hence, modi�cation made in this paper over MC helps to

achieve better overall EDAC coverage without sacri�cing in terms of code rate.

In MMC, each con�guration frame is partitioned virtually into multiple R�R

matrices (also known as window), and MMC code is used to correct and detect

errors in each window as shown in Figure 7.4. R is the number of rows and

columns of each window and here the MMC algorithm is described with R=7

in Figure 7.5(a). Circle superimposed on the summation symbol '@' indicates
modulo-2 sum. A simpli�ed example in Figure 7.5(a) illustrates how the proposed

MMC can achieve multi-bit EDAC using diagonal and vertical parity bits within

a single window. At the beginning of encoding process, data of one window size

will be read and stored in a matrix and then parity bits are generated along both

diagonal and vertical directions of the matrix using equation 7.1 to equation 7.6.

Here X indicates bits within the matrix.

173

Figure 7.3: Detection and correction coverage of MMC and MC over 64 bit data

Cpi �
i�1

A
j�0

X�i�1����R�1��j�¾i � 1toR (7.1)

Cpi �
R�1

A
j�i�R

X�i�1����R�1��j�¾i � �R � 1�to�2 �R � 1� (7.2)

Cni �

i�1

A
j�0

X�i��R��R�1���1����R�1��j�¾i � 1toR (7.3)

Cni �

�2R�i�1�

A
j�0

X�i�R����R�1��j�¾i � �R � 1�to�2 �R � 1� (7.4)

V poi �

��R�1�©2�

A
j�0

X�i��R�2�j��1�¾i1 to R (7.5)

V pei �

��R�1�©2�1�

A
j�0

X��R�i�1���R�2�j��¾i � 1 to R (7.6)

Cp and Cn are an array of (2R-1) bits and store parity bits for the diagonal

bits along unit positive and negative slope respectively for each window gener-

ated during encoding process (indicated by pink color blocks in Figure 7.5(a)).

Similarly,V po and V pe are arrays of R bits and store parity bits generated using

the bits of each column in a window for odd and even positions respectively (indi-

cated by yellow and green color respectively in Figure 7.5(a)). These parity bits

along with the con�guration data will be read back into the MMC block during

174

 Bits in
Configuration
 Memory

 Window in
Configuration
 Memory

Figure 7.4: Window formation within a con�guration frame

the decoding process. Working methodology of proposed MMC is shown in Fig-

ure 7.6. At the start of the decoding process erroneous data along with the parity

bits (generated during encoding) are read and stored in three dual port RAMs.

Diagonal parity bits are computed using data stored in the dual port RAM1 and

is sent to the comparator block where it is compared with the stored diagonal par-

ity bits. If a mismatch occurs, then, second parity computation block calculates

the vertical parity bits. Results of the �rst and second parity computation block

are sent to a decider block where position of the erroneous bits are generated

and are forwarded again to RAM1 to correct the erroneous bits. After multiple

iterations, if error is not corrected then error �ag becomes high to indicate the

presence of uncorrectable errors.

Now the above mentioned EDAC methodology using MMC is explained with

the help of the decoding algorithm as described in algorithm 9. The key concept

behind decoding process of MMC is parity decoding with majority voting. Erro-

neous bits in the matrix will be detected if at least two parity equations out of

the three parity equations (along positive diagonal (equation 7.1 and 7.2), along

negative diagonal(equation 7.3 and 7.4), along even or odd vertical (equation 7.5

or 7.6)) through the bit gives wrong result. On the other hand if any one of the

three parity equations give wrong result, error will be detected within the window

but can not be corrected. Decoding process can be discussed using the follow-

ing examples. During the decoding process, the matrix A
¬

stores 49 (7x7) bits of

175

X3
X10X9

X0 X2X1
X11 X12 X13

X4 X 5 X6

X7 X8

X42
X

43 X44 X45
X46 X47 X

48

1Cn Cn2
Cn7

Cn13

Cp1Cp2

Cp
7

Cp13

1 2 3 4

5 6 7 8 9

10

0

11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 2 3 4

5 6 7 8 9

10

0

11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 2 3 4

5 6 7 8 9

10

0

11 12 13 14

15 16 17 18 19

20 21 22 23 24

(b-I)

During First
 Iteration

During Second
 Iteration

(c)

(b-II) (b-III)

1 2 3 4

5 6 7 8 9

10

0

11 12 13 14

15 16 17 18 19

20 21 22 23 24

(b-IV)

1 2 3 4

5 6 7 8 9

10

0

11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 2 3 4

5 6 7 8 9

10

0

11 12 13 14

15 16 17 18 19

20 21 22 23 24

(a)

Figure 7.5: (a)Encoding/Decoding using 7�7 window (b)Di�erent error patterns
(c) Error Correction using Multiple Iterations

Dual Port
 RAM1
 (32x2)

 Dual Port
RAM2(32x2)

(Store Diagonal
 Parity Bit)

 Dual Port
RAM3(32x2)

(Store Vertical
 Parity Bit)

 Parity
Computation

 Parity
Computation

Counter

D-FF

Comparator

49 bits

13 bits

Decision Making
 Block 13 bits

 Input Data
 From
Configuration
 Memory

Genarated Parity
 bit During
Encoding Process

Error Flag

Figure 7.6: Working Methodology of the proposed MMC code

erroneous data obtained from the con�guration memory. Ith is the number of iter-

ations set by the user. There is a trade-o� between latency, Bit Error Rate (BER)

and Ith as shown in Figure 7.7. Here, the latency is de�ned as the time required

to detect or correct errors in the con�guration memory and BER is de�ned as the

ratio of corrected errors to the total number of errors injected. The increment

of Ith will improve BER performance but at the same time, latency will also in-

crease. As we target real-time applications, optimization of BER and latency are

of high priority and hence we choose the value of Ith � 3 for this design, whereas

the value of Ith can be tuned as per the applications need. In Figure 7.5(a), four

176

adjacent bits X17,X18,X24,X25 are a�ected by errors. Errors at X17 and X18 are

corrected by odd vertical parity equations and parity equations along positive

diagonal with unit slope through X17 and X18 respectively. Similarly, Errors at

X24 and X25 are corrected by the even vertical parity equations and parity equa-

tions along negative diagonal with unit slope through X24 and X25 respectively.

Hence, error in these four bits can be corrected using algorithm 9. Some typical

error patterns are discussed in Figure 7.5(b). In Figure 7.5(b-I) bits at position

6, 7 and 8 will be corrected using parity equations along positive diagonal with

unit slope and even vertical parity equations through these bits. Similarly, bits

at position 11, 12 and 13 will be evaluated using parity equations along negative

diagonal with unit slope and odd vertical parity equations through these bits.

Clustered error in Figure 7.5(b-II) can be detected by positive diagonal through

bits 6 and 18, negative diagonal through bits 8 and 16 and odd vertical parity

equations through bits 11,12 and 13. Apart from the errors in contagious mem-

Figure 7.7: Variation of correction coverage of MMC and latency with iteration

ory locations, the proposed MMC code is also able to detect and correct errors in

discrete positions. In Figure 7.5(b-III), the error occurred in bit positions 5,8,15

and 18 will be recti�ed using parity equation along positive diagonals with unit

slope and negative diagonals with unit slope through these bits.

177

Algorithm 9 Decoding Algorithm for proposed MMC

Require: A¬

[R,R], Cp, Cn, V po, V pe, Ith

Ensure: Corrected or partially corrected A[R,R];

1: i � 1;p1 � 0;p2 � 0;

2: while (i (Ith) do

3: Calculate Cp
¬

, Cn
¬

, V po
¬

, V pe
¬

using equ 7.1 to equ 7.6

4: for (i1 � 1�(2R � 1)) do

5: M1(i1)=Cp(i1)hCp
¬

(i1); M2(i1)=Cn(i1)hCn
¬

(i1);

6: end for

7: for (i2 � 1� 2R) do

8: M3(i2)=V po(i2)hV po
¬

(i2); M4(i2)=V pe(i2)hV pe
¬

(i2);

9: end for

10: p1 and p2 store the position of �rst one in M1 and M2;

11: while ((p1 ((2R � 1))½(p2 ((2R � 1))) do

12: c1 � 0;x1 � 0;store1 � p1;store2 � p2;

13: if ((p1 (R))&&(M1(p1)� 1)) then

14: t1 � 1;k1 � p1;u1 �((R � k1)+1);j1 � k1;

15: while ((c1 � 0)&&(j1 %� 1)) do

16: w1 �M2(u1);L1=store either M3(t1) or M4
¬

(t1);

17: if (((w1 � 1)½(L1 � 1))) then

18: Update A'(j1,t1),M1(p1),M2(u1),M3(t1) or M4(t1),c1=1;

19: end if

20: u1 � u1 � 2;t1 � t1 � 1;j1 � j1 � 1;

21: end while

22: end if

23: if ((p1 % R))&&(M1(p1)� 1)) then

24: t1 �(p1 �R)�1;k1 � R;u1 � t1;j1 � t1;

25: while ((c1 � 0)&&(j1 (R)) do

26: w1 �M2(u1);L1=store either M3(t1) or M4(t1);

27: if (((w1 � 1)½(L1 � 1))) then

28: Update A'(k1,j1),M1(p1),M2(u1),M3(j1) or M4(j1),c1=1;

29: end if

30: u1 � u1 � 2;k1 � k1 � 1;j1 � j1 � 1;

31: end while

178

32: end if
33: if ((p2 (R)&&(M2(p2)� 1)) then
34: b1 � 1;d1 �(R � p2 � 1);e1 � d1;j3 � e1;
35: while ((x1 � 0)&&(j3 (R)) do
36: y1 �M1(d1); L2=store either M3(b1) or M4(b1);
37: if (((y1 � 1)½(L2 � 1))) then
38: Update A'(j3,b1),M1(d1),M2(p2),M3(b1),M4(b1),x1=1;
39: end if
40: d1 � d1 � 2;b1 � b1 � 1;j3 � j3 � 1;
41: end while
42: end if
43: if ((p2 % R)&&(M2(p2)� 1)) then
44: b1 �(p2 �R)�1;d1 � b1;t2 � 1;j3 � b1;
45: while ((x1 � 0)&&(j3 (R)) do
46: y1 �M1(d1);L2=store either M3(b1) or M4(b1);
47: if (((y1 � 1)½(L2 � 1))) then
48: Update A'(t2,b1),M1(d1),M2(p2),M3(b1),M4(b1),x1=1;
49: end if
50: d1 � d1 � 2;b1 � b1 � 1;j3 � j3 � 1;t2 � t2 � 1;
51: end while
52: end if
53: if (((c1 � 1)½(x1 � 1))) then p1=d1-2;p2=u1-2;
54: end if
55: if ((c1 � 0)&&(c2 � 0)) then p1=p1+1;p2=p2+1;
56: end if
57: end whilei � i � 1;
58: end while

Error pattern in Figure 7.5(b-IV) will be detected by parity equations along

positive diagonal through bits 5 and 17 and parity equations along negative di-

agonal through bits 7 and 15.

HPC used in [89] use (10,7) Hamming code as component code. As minimum

distance (dmin) of Hamming code is three it can detect single bit error but cannot

di�erentiate between single and double bit errors. Hence, HPC cannot detect

or correct when multi-bit errors are present along both row and column (as in

Figure 7.5(b-I) to (b-IV)) in a matrix. HPC can correct two bit errors with 100%

e�ciency but if more than two bit errors come in a window error correction cov-

erage will depend on position of erroneous bits. Similarly matrix code [93] also

179

cannot detect or correct errors shown in Figure 7.5(b-I) and (b-II) and only detect

errors shown in Figure 7.5(b-III) and (b-IV). On the other hand MMC can detect

and correct the error patterns shown in Figure 7.5(b-I) and (b-III) and detect the

error patterns in Figure 7.5(b-II) and (b-IV) as illustrated before. In some cases

error may not be corrected in a single iteration, it will take multiple iterations

(i.e.value of Ith is greater than one). In Figure 7.5(c), errors occurring at bit

positions 1,3,10,13, 22, 24 will be corrected in the �rst iteration whereas, errors at

bit positions 4 and 20 will be corrected in the second iteration. Proposed MMC

is most e�cient to correct either discrete multi-bit errors (as shown in 7.5(c)) or

clustered errors when cluster size is small as shown in Figure 7.5(a). With the

increase of cluster size as shown in Figure 7.5(b-II) e�ciency of MMC starts to

fall. For multi-bit errors with large cluster size, it is better to perform error cor-

rection on multiple con�guration frames in parallel instead of single con�guration

frame at a time. In the next section we are going to discuss such multi-bit error

correction schemes.

7.3 Error Detection using Interleaved MMC

In MMC, each con�guration frame is scanned using R � R window and for each

window separate diagonal, and vertical parity bits are calculated. In this process

EDAC can be done on multiple windows simultaneously. Though error detection

is 100%, error correction is less than 100% in MMC. With the decrease of window

size, error correction capability of MMC in con�guration frame will increase but

overhead (redundant bits) for each con�guration frame will also increase. De-

creasing window size increases memory access time and error correction time for

each con�guration frame. Hence, overall latency will increase with decrease of

the window size as shown in Figure 7.8, but for real time system, high latency

can not be tolerated. Sometimes clustered error may not be possible to correct

using MMC if multiple error clusters are within a single window. These clusters

can be easily corrected if erroneous bits in the cluster can be spread virtually into

multiple windows. It can be concluded that error correction capability of MMC

depends on the position of the cluster within the con�guration frame. MMC can

correct one con�guration frame at a time. Though it gives good error correcting

180

Figure 7.8: Variation of error correcting capability of MMC and latency with
di�erent window sizes

performance, it also takes a long time to check each con�guration frame sepa-

rately. Usually, in a con�guration memory, some of the con�guration frames are

a�ected by errors. Hence, error correction latency can be reduced by performing

the error correction operation on multiple con�guration frames in parallel. To

correct multiple con�guration frames at the same time detection process needs

to be separated from the correction process. Initially detection process detects

erroneous frames and then correction technique corrects the detected erroneous

frames. The separation of detection and correction process increases the error

correction coverage.

It is already mentioned that error detection capability of MMC is 100% which

makes MMC more suitable for error detection purpose. The number of redun-

dant bits generated by MMC can be reduced by using the simple interleaving

technique [163] when it will be used only for detection purpose. MMC with

the interleaving along both diagonal and vertical directions can be termed as

interleaved MMC (IMMC). Error detection performance of IMMC is given in

section 7.7 with di�erent interleaving depth. After detection of an erroneous

frame, its content can be recovered using special kind of erasure code known as

EVENODD coding (described in section 7.4). Hence, the objective of IMMC is

to detect erroneous frame and not to locate the exact position of erroneous bits

181

within the con�guration frame.

CpI�i1� � CpI�i1�h
� R
dp

$

A
k�0

Cp�i1 � �k � dp��¾i1 � 1 to dp (7.7)

CnI�i2� � CnI�i2�h � R
dn

$

A
l�0

Cn�i2 � �l � dn��¾i2 � 1 to dn (7.8)

V poI�i3� � V poI�i3�h � R
ho

$

A
q�0

V po�i3 � �q � ho��¾i3 � 1 to ho (7.9)

V peI�i4� � V peI�i4�h � R
he

$

A
r�0

V po�i4 � �r � he��¾i4 � 1 to he (7.10)

Parity bits of IMMC technique is generated using the equation 7.7 to equa-

tion 7.10. The size of the con�guration frame is 3232 bit (101 � 32) so a matrix

of size 57 � 57 can be chosen to accommodate data of a con�guration frame.

In this chapter, it is assumed that maximum ten to twelve adjacent bits in a

con�guration frame are being a�ected by radiation so that size of the clustered

error is quite small compared to a con�guration frame. This assumption is val-

idated from the simulation result plotted in Figure 7.1. At the �rst step of the

detection process parity bits are calculated from both original con�guration data

(Cp,Cn, V pe, V po) and erroneous con�guration data (Cp
¬

, Cn
¬

, V po
¬

, V pe
¬

) us-

ing equation 7.1 to equation 7.6 taking the value of R as 57. Then according

to the value of interleaving depth along both diagonals (dp is the interleaving

depth along positive diagonal and dn is the interleaving depth along negative

diagonal) and vertical direction (he is the interleaving depth for bit in even po-

sition in a column, and ho is the interleaving depth for bit in odd position in a

column) interleaved parity bits are calculated from the redundant bits of both

original con�guration data (CpI, CnI, V peI, V poI) and erroneous con�guration

data (CpI
¬

, CnI
¬

, V poI
¬

, V peI
¬

) using the equation 7.7 to equation 7.10. Hence

in IMMC, only (dp � dn � he � ho) bits are required to detect error in a con-

�guration frame that is quite small compared to the bits required to correct an

error in a con�guration frame using MMC. In Figure 7.9, line with the same color

182

Figure 7.9: Detection using Interleaved MMC

along both positive and negative diagonal with unit slope generate a single parity

bit. Similarly, bits in the column with the same color generate single parity bit.

Here, interleaving distance along both diagonal and vertical direction is taken as

four (i.e values of dp, dn, he, ho are equal to four) but they can be changed to

any value. Mismatch in the value of interleaved parity bits generated from origi-

nal con�guration data and erroneous con�guration data indicate the presence of

errors in the con�guration frame.

7.4 Error Detection and correction using EVEN-

ODD coding

7.4.1 Overview of EVENODD coding

EVENODD is a simple parity based erasure code originally developed to protect

data in double disk failure in a Redundant Array of Independent Disks (RAID)

architecture as described in [164]. In RAID architecture, data are distributed

across the di�erent disks in such a way that provides improved fault tolerance,

increase storage capacity and improved overall system performance. A similar

concept is used here to protect data in the con�guration memory of SRAM-based

183

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1

1 1 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1

1 1 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0

0

0
0

0

0

1

1
1

1

1

1

(a) (b)

Figure 7.10: Example of EVENODD encoding taking R � 7

FPGA. EVENODD is a cyclic code and parity check matrix (H) of EVENODD

code is described using equation 7.11. Here, R is the number of columns and

(R-1) is the number of rows of matrix that will be used for encoding and β is

an element of Galois �eld [164]. Using H we can derive that the dmin of the

EVENODD code is 3 [164].

H � �1 1 1 . . . 1 1 0

1 β β
2
. . . β

R�1
0 1

� (7.11)

Decoding of EVENODD code in con�guration memory of FPGA can be done

either in two steps (where detection and correction are separate process) or in a

single step (where detection and correction will be done simultaneously). Here,

we will discuss both of these two cases but in both cases encoding process is

same which is described using a simple example as shown in Figure 7.10. The

input of the encoding process is a matrix A of size (R � 1)�R where R should

be a prime number, but it will not be a constraint. If R is not a prime number,

we will take next prime number following this arbitrary number assume that all

information bits in the added row or columns are 0. In Figure 7.10 (a), a matrix

of size 6� 7 (taking the value of R as 7) is given as input to the encoding process

and Figure 7.10 (b) shows the matrix of size 6 � 9 after encoding with last two

columns as redundant data, generated during encoding process. At the �rst step

of the encoding process syndromes are calculated using equation 7.12

S � A�5, 1�h A�4, 2�h A�3, 3�h A�2, 4�h A�1, 5�h A�0, 6�; (7.12)

Then redundant data in 7
th
and 8

th
column can be calculated using equation 7.13

A�v, 7� � 6

A
u�0

A�v, u�
A�v, 8� � S h 6

A
u�0

A���u � v�mod7�, u�¾u � 0 to 6, v � 0 to 5

(7.13)

184

As dmin of EVENODD code is three, external detection technique can detect

maximum two erroneous columns of matrix A[(R-1),(R+2)] using algorithm 10

otherwise it can correct single erroneous column of matrix A[(R-1),(R+2)]. De-

tails of encoding and decoding of EVENODD code can be seen from [164].

7.4.2 Recovery based on EVENODD code

Here we will discuss how previously described EVENODD code is applied to

correct clustered error or multiple adjacent erroneous bits in the con�guration

memory of FPGA. Clustered error may a�ect multiple con�guration frames or

a large portion of a single con�guration frame. As the �rst step of encoding

process, con�guration memory is partitioned into multiple regions (described in

section 7.5), and it is assumed that partitioned regions will be activated in a

periodic interval. Hence, at any instant, only con�guration frames of a particular

region will be available in the error detection and correction block (EDACB)

unlike the other error correction schemes [97] where data of the full con�guration

memory is available to EDACB at a particular instance. After reading the idle

partial region into EDACB, the available con�guration frames are divided into

several groups as shown in Figure 7.11. Here the group formation is quite di�erent

from that of the group formation technique described in [97]. In [97], authors

formed the group only in horizontal direction, but here, the groups are formed

along both vertical and horizontal directions.

Figure 7.11 describes the group formation along both horizontal and vertical

directions and EVENODD coding is used to generate the redundant data to

protect the con�guration frames using equation 7.14 to 7.19. In Figure 7.11, we

have assumed each horizontal group contains M con�guration frames and each

vertical group contains N con�guration frames. NC indicates number of column in

each con�guration frame and NR indicates number of row in each con�guration

frame. Rh1 and Rh2 indicate redundant frames for each horizontal group and

Rv1 and Rv2 indicate redundant frames for each vertical group. Ai,j indicates

con�guration frame in i
th
horizontal and j

th
vertical group.

Shk�i� � M�1

A
t1�1

Ak,t1�M � 1 � t1, i�¾i � 0 to �NC � 1�, k � 0 to �N � 1� (7.14)

185

Algorithm 10 Decoding Algorithm for EVENODD

Require: Detected column(i, j),Erroneous A[(R-1),(R+2)]
Ensure: Corrected A[(R-1),(R+2)];
1: A[(R � 1),z]=0 ¾z � 0�(R � 1)
2: if ((i � R)&&(j � R � 1)) then
3: Decoding process will be similar to Encoding Process;
4: end if
5: if (i $ R)&&(j � R � 1) then
6: First i

th
column will be corrected using equations in line no. 8 in Encoding

Algorithm and then j
th
column can be recovered using similar equations in

encoding process.
7: end if
8: if (i $ R)&&(j � R) then
9: i

th
column will be corrected as follows and then j

th
column will be cor-

rected equations in line no. 8 in Encoding Algorithm
10: t1 �(i � 1) mod R;
11: for l � 0� (R � 1) do
12: t2 �(i � l � 1) mod R;S � Sh A(t2, l);
13: end for
14: S � Sh A(t1,(R � 1));
15: for k � 0�(R � 2) do
16: for l � 0�(R � 1) do
17: if l j i then
18: t3 �(k � i � l) mod R;A(k, i)=A(k, i) h A(t3, l);
19: end if
20: end for
21: A(k, i)=S h A(k, i) h A(t1,(R � 1));
22: end for
23: if (i $ R)&&(j $ R) then
24: for l � 0�(m-2) do
25: S= A(l,m) h A(l,m � 1);
26: end for
27: for u � 0� (R � 1) do
28: for w � 0� R do
29: SL(u)=SL(u)h A(u,w);
30: end for
31: SU(u)=Sh A(u,R � 1);
32: for t � 0� R do
33: if (t j i)&&(t j j) then
34: v �(u � t) mod R;SU(u)=SU(u) h A(v, t);
35: end if
36: end for
37: end for
38: end if

186

(a)

(b)

GROUPV-1

i

GROUPV-1 GROUPV-2 GROUPV-N

Redundant Frames

Redundant Frames

GROUPV-NGROUPV-2

A 00 A01 A0M

A10 A11 A1M

AN0 AN1 ANM

A 00 A01 A0M

A10 A11 A1M

AN0 AN1 ANM

RV11

RV21

RH20

RH10 RH20

RH11

RH11

RH21

RH21

RH1N

RH1N RH2N

RV11

RV21

RV20

RV20

RV10

RV10

RV1M

RV1M

RV2M

RV2M

* * * *

* * * * *

* * * *

* * * * *

* * * * *

* * * * *

@ @ @ @

@ @ @ @ @

@ @ @ @

@ @ @ @ @

RH10
* @

RH2N

* @

@ @ @ @ @

@ @ @ @ @

##

#

#

##

##

#

% %%

% % %

% % %

%

%

%

% %

%

% % %

% % %

%% %

% % %

% % %

$ $

$

$

$ $

$ $ $

$ $ $

$ $ $

$ $ $

$ $ $

$ $ $

$ $ $

$$ $

x xx

x x x

x x x

xxx

xxx

x x x

xxx

xx x

xxx

xxx

Redundant bit generated
using EVENODD coding
from horizontal cluster

Configuration bit

Redundant bit generated
using EVENODD coding
from vertical cluster

Diagonal parity bit
generated from data
in configuration frame

Vertical parity bit
generated from
data in
configuration frame

Diagonal parity bit
generated from
data in redundant frame

Vertical parity bit
generated from
data in redundant frame

Figure 7.11: Grouping of con�guration frames for decoding using EVENODD
code: (a) when EDAC is done separately(b) when EDAC is done simultaneously

187

39: if k j(R � 1) then
40: k �(i � j � 1) mod R
41: while k j(R � 1) do
42: v1 �(j � k) mod R;v2 �(k � j � i) mod R;
43: A(k, j)=SL(v1)hA(v2, i);A(k, i)=SU(k)hA(k, j);
44: k �(k � i � j) mod R;
45: end while
46: end if
47: end if

Svl�j� � N�1

A
t2�1

At2,l�N � 1 � t2, j�¾j � 0 to �NC � 1�, l � 0 to �M � 1� (7.15)

Rh1k�u, v� � M�1

A
t1�0

Ak,t1�u, v�¾k � 0 to �N�1�, u � 0 to �NR�1�, v � 0 to �NC�1�
(7.16)

Rv1k�u, v� � N�1

A
t2�0

At2,k�u, v�¾k � 0 to �N�1�, u � 0 to �NR�1�, v � 0 to �NC�1�
(7.17)

Rh2k�u, i� � Shk�i�h M�1

A
t1�0

Ak,t1���u � t1�modM�, i�¾k � 0 to �N � 1�,
u � 0 to �NR � 1�, i � 0 to �NC � 1�

(7.18)

Rv2l�u, i� � Svl�i�h N�1

A
t2�0

At2,l���u � t2�modN�, i�¾l � 0 to �N � 1�,
u � 0 to �NR � 1�, i � 0 to �NC � 1�

(7.19)

Columns marked with the same symbols of di�erent frames within a group are

encoded by EVENODD coding and generate the two redundant columns marked

with the same symbol for two redundant frames. As for example in Figure 7.11,

column marked with '#' in all con�guration frames are encoded by EVENODD

coding and generate column marked with '#' in two redundant frames for N

horizontal groups. Similarly, in the vertical direction, columns marked with '$'

in all con�guration frames are encoded using EVENODD code and then generate

columns marked with '$' in two redundant frames for M vertical groups. So for

188

each group in horizontal and vertical directions we get two redundant frames.

Correction algorithm mitigate errors not only in con�guration frames but also in

redundant frames.

Decoding can be done either in two steps where EDAC are separate process

as shown in Figure 7.11(a) or in single step where EDAC is done simultaneously

as shown in Figure 7.11(b). Here we are going to describe eror correction using

EVENODD coding when IMMC is used to detect erroneous frames. At the

beginning of decoding process con�guration frames along with redundant frames

from a idle partitioned region will read back and the error correction will be done

according to the following cases:

1. If errors are detected in either of the redundant frames or in both of the

redundant frames in each group they can be corrected using the encoding

process itself (using equations 7.14 to 7.19)

2. If any con�guration frame either in horizontal group or in vertical group

is erroneous but no redundant frames are erroneous they can be corrected

using equations 7.14 to 7.19.

3. If error is detected in A
th
ij con�guration frame, R

th
h1i redundant frame of i

th

horizontal group and R
th
v1j redundant frame of j

th
vertical group then errors

in Aij can corrected using the equations 7.20 and 7.21

Sh�k� � Rh2i���j � 1�modM�, k�h M�1

A
l�0

Ai,l���j � l � 1�modM�, k�
¾k � 0 to NC � 1

(7.20)

Ai,j�t, k� � Sh�k�hRh2i���j � 1�modM�, k�h �M�1�

A
l�0
ljj

Ai,l���t � j � l�modM�, k�
¾t � 0 to �NR � 2�, k � 0 to �M � 1�

(7.21)
Then error in redundant frames Rh1i and Rv1j can be corrected using the

equation 7.16 and equation 7.17 respectively.

4. If error is detected in A
th
ij con�guration frame, R

th
h2i redundant frame of

189

i
th

horizontal group and R
th
v2j redundant frame of j

th
vertical group then

errors in con�guration frame can be corrected using the equation 7.16 and

equation 7.17 and errors in redundant frames can be corrected using the

equation 7.18 and equation 7.19.

5. Error in con�guration frames Api, Apj, Aqi and Aqj can be corrected using

the equations 7.22 to 7.27

Sp�k� � ��M�2�

A
l�0

Rh1p�l, k��h ��M�2�

A
l�0

Rh2p�l, k�� ¾k � 0 to �M � 1� (7.22)

S
upper
p �b, k� � M�1

A
l�0

lj�i,j�

Ap,l�b, k�¾ k � 0 to �NC�1�, b � 0 to �NR�1� (7.23)

S
lower
p �b, k� � Sp�k�hRh2p�b, k�h �M�1�

A
l�0

lj�i,j�

Ap,l���b � l�modM�, k�
¾k � 0 to �NC � 1�, b � 0 to �NR � 1�

(7.24)

Now the errors in con�guration frames Api, Apj can be corrected using the

equations 7.25 to 7.27.

Y �k� � ��i � j � 1�modM� (7.25)

Ap,j�Y �k�, k� � Slower
p ���j�Y �k��modM�, k�hAp,i���Y �p��j�i�modM�, k�

(7.26)

Ap,i�Y �k�, k� � Supper
p �Y �k�, k�h Ap,j�Y �k�, k� (7.27)

Update Y (k)= ((Y (k)�j � i) mod M). If Y (k)= M-1 then stops otherwise

go to equation 7.26.

Increase k � k � 1 and go to equation 7.25 until k � (NC-1).

Then error in con�guration frames Aqi and Aqj can be corrected using equa-

tion 7.17 and equation 7.19.

During the decoding process, the erroneous frames will be detected by IMMC

in the �rst step and then erroneous con�guration frames and redundant frames

within a group are corrected according to di�erent cases described above. Using

EVENODD decoding, maximum two frames (including both con�guration and

190

redundant frame) can be corrected in each vertical and horizontal group whereas

the technique proposed in [97] can correct single frame in a group. Though in

proposed EVENODD coding overhead is higher compared to the technique pro-

posed in [97]. Authors in [97] suggested that con�guration frames in the same

group should be physically far apart so that multiple erroneous frames are not

present in the same group. This is possible when data from all con�guration

frames are available to EDACB but in our case, within EDACB, only con�g-

uration frames from a particular region of con�guration memory are available.

Hence, the probability of occurrence of multiple erroneous frames in a group is

high in our proposed models.

When IMMC will not be used for detection, one full con�guration frame or

multiple con�guration frames having errors in di�erent portions within a group

can be corrected using EVENODD decoding algorithm as described in section

4.2 of [164]. Obvious advantage of this method is that no prior information is

required about the erroneous frames in a group before error correction. Some-

times, di�erent portions of multiple con�guration frames (more than two) become

erroneous within the same group. Then error correction scheme in Figure 7.11(a)

and in [97] fails to correct these frames but error correction technique described

in Figure 7.11(b) can correct these type of errors. As the SBUs and MBUs are

random in nature, there is very low probability that same region in the multiple

con�guration frames within the same group will be a�ected simultaneously. As

for example, it can be assumed that there is very low probability that columns

marked with '#' in the multiple con�guration frames in the same horizontal group

will be a�ected by MBUs at a time. Similarly, there is also very low probability

that columns marked with '$' will be a�ected by MBUs in the multiple con�gu-

ration frames in a vertical group.

MBUs in con�guration memory sometimes may a�ect redundant bits used to

detect erroneous frames in IMMC. This may a�ect error correction functionalities

described in Figure 7.11(a) because erroneous redundant bits can not detect erro-

neous con�guration frames properly. Hence, to alleviate this e�ect, this module is

protected by TMR as by the authors in [97]. Since the size of the redundant bits

used for error detection is small, area overhead imposed by TMR implementation

is not signi�cant. As there is no separate detection technique is used, no TMR

191

Table 7.1: Summary of error detecting and correcting codes used in this paper

Name of
the code

Component
code Error Detection and Correction Capability

MMC Parity code with Error Detection is 100% and error correction capability is 100% for
majority voting errors up to 3 bit. For more than three bit errors, error correction

depends on the position of the erroneous bits
MC [93] Hamming code dmin of HC is 3. Hamming code and parity code help to detect and correct

and parity code two bit errors with 100% e�ciency. For more than two bit errors,
error detection and correction depends on the position of erroneous bits.

IMMC
MMC with
interleaving Used only for error detection. Error detection

varies with interleaving depth as shown in Table 7.2
HPC [89] Hamming code dmin of hamming code is 3. Error detection and correction

depends on the position of erroneous bits

EVENODD
[164] N/A dmin of EVENODD code is 3. Without external detection EVENODD

can correct all the errors in the single column of a matrix.
With external detection it can correct any two columns of a matrix.

implementation is required to protect redundant bits for error detection in the

procedure described in Figure 7.11(b). Table 7.1 illustrates summery of EDAC

capability of di�erent error correcting codes used in this chapter

7.5 Dynamic Priority Based Algorithm for down-

load manager

Application hardware, placed into the con�guration area of an FPGA chip con-

sists of few sub-components, which may be stated as standard IPs or custom

IPs. Here each component will be placed into a partitioned area of the FPGA.

Proposed algorithm 11 calculates a dynamic priority for each IP which decides

the sequence of fault scanning process of all IPs. The IP with highest priority

would be scanned �rst and the IP with least priority would be scanned last.

Lets us assume in our application available L number of IPs execute periodic

process. The read back time, scanning time, partial bit �le downloading time, IP

active time and IP idle time of i
th
IP (IPi) are Ri, Si, Di, Ei and Ii respectively.

The period of the i
th
IP is Ti=Ei+Ii where i=1 to L. Ai is the algorithm execution

time and t is the period of the input clock which drives the application. Wu and

Wf are user de�ned parameter. Steps of the proposed algorithm as follows:

1. IP of a partitioned region must remain idle during the downloading of bit �le

for that PR region. The system will be uninterrupted if bit �le downloading

192

Algorithm 11 Algorithm of download manager

Require: clk, wu, wf busyi, Ti where i � 1� L;
Ensure: FPmax;
1: for i � 1� L do
2: Triggered the for loop at rising edge of busyi
3: Sti �

Ei�Ii
t

4: if (rising_edge(clk)) then
5: if Sti � 0 then
6: Sti �

Ei�Ii
t

7: else
8: Sti � Sti � 1;
9: end if

10: if (then(Ri � Si � Ai �Di)$� Sti � t)
11: Pi � Sti�(

Ai�Si�Di

t
)

12: end if
13: end if
14: end for
15: FPi �[wu�(

1

Pi
)�wf�(

Ei

t
)];

16: Find maximum among allFPi;

time Di can be �tted into IDLE time Ii for i
th

IP. Hence, the primary

assumption taken for the proposed approach is Ii ' Di.

2. A status register Sti allocated for each IP measures the period from current

time until its next transition from IDLE state to EXECUTION state occurs.

At the beginning, Sti is initiated by Ei�Ii
t

and it is decremented by one in

every rising edge of clock. Whenever Sti becomes 0, it is initiated by Ei�Ii
t

again. The timing diagram of Sti is shown in Figure 7.12.

3. In the next step priority Pi will be calculated by subtracting Ai�Si�Di

t
from

Sti. Here (Si �Di) is fault scanning time which is denoted by FSi.

4. The IP with large execution time has more share in the overall hardware

process. If it is a�ected by clustered error, then there is a high probabil-

ity that system will give erroneous result for large time compared to the

situation where IP with small execution time is a�ected by clustered error.

So designer will always try to rectify the error with high priority for IPs

with large execution time compared to IPs with small execution time. To

193

satisfy this constraint, Ii ' Di may fail which suspends normal system op-

eration. Hence, �nal priority can be de�ned as FPi �[wu�(
1

Pi
)�wf�(

Ei

t
)]

where wu �wf � 1. Here Pi and FPi will be updated in parallel. If wu � 1

and wf � 0 then user set the priority fully based on the logic resources of IP.

In this case, the system will never stop, but the probability that system will

give the wrong result is high. On the other hand, if wu � 0 and wf � 1 then

user set the priority fully based on the execution time of IP or criticality of

the IP. In this case the probability, that system will give the wrong result

is less but the system may halt. Users can choose the value of wu and wf

in between 0 and 1 as per their requirement.

5. The value of FPi decides which PR region will be scanned �rst. In a time

instant, the IP having higher FPi is the most suitable one to be scanned

by Internal Con�guration Access Port (ICAP). The IPs with a lower value

of Pi or higher FSi, have large hardware resources compared to IPs with a

higher value of Pi. In future, the probability to �nd large time slot in Sti

for accommodating such bulky FSi is less where as lighter IPs with lesser

FSi can be �tted more frequently in Sti. On the other hand higher value

of Ei

t
means IP has higher execution time.

6. During the scanning and error correction (if the fault occurs) on a chosen

IPi, FPi will be monitored by the remaining (L � 1) IPs and again the IP

with highest FPi will be chosen for error detection and correction.

7. In a trivial case where no IPs are found which has less FSi than its Sti,

then Sti will be compared with 2�(Ei�Ii
t

).

It is to be noted that algorithm 11 is designed in hardware in such a way that line

5 to 9, line 11 and line 15 will be executed in parallel. In Figure 7.12, IP1 has

execution time E1, Idle time I1 and status register St1, IP2 has execution time

E2, Idle time I2 and status register St2, similarly n
th
IP has execution time En,

Idle time In and status register Stn. In blue vertical line at the third rising edge

of clock the value of St1, St2,Stn are 3, 3 and 5 respectively. If t is the period

of the clock, for IP1, IP2 and IPn the download manager will check the relation

between R1 � S1 �A1 �D1 with 3� t, R2 � S2 �A2 �D2 with 3� t. for IP2 and

194

Stn

St1

St2

E1

I2

I1

E2

En
In

t

Figure 7.12: Timing diagram of Sti
Rn � Sn �An �Dn with 5� t respectively. According to the line number 11 and

15 of algorithm 11, Pi and FPi will be calculated. The IP with maximum FPi

will be scanned �rst.

7.6 Hardware Implementation and its work�ow

Hardware implementation of the proposed EDAC schemes for the con�guration

memory of FPGA is shown in Figure 7.13. The design can be partitioned into

two parts: static area and con�guration area. The static area consists of Hard-

ware scheduler block, Master ICAP controller, Slave interface controller, EDACB,

Hardware ICAP (HWICAP) and ICAP interface. Error in the static area will

be detected by CRC. Con�guration area consists of the application, built up by

multiple PR regions which is to be con�gured during the runtime as shown in

Figure 7.13. After power is on, bit �le will be downloaded from a secondary mem-

ory into the con�guration memory through ICAP port, and then there will be

no communication between secondary memory and con�guration memory. Slave

interface block gets the controlling information from the master. Master sends

multiple informations namely ICAP_start, bit addresses, and bit length. ICAP

acknowledges master using ICAP_done port while dynamic con�guration process

is done. The HWICAP is an interface to the ICAP. Redundant data for EDAC

is stored locally into block RAM of FPGA devices. During the bit �le download-

ing TXFIFO inside the HWICAP reads con�guration data from Block RAM and

send it to the con�guration memory. Similarly, during read back RXFIFO will

receive con�guration data from con�guration memory and send it to block RAM

inside EDACB. Total time spent by the IPs into the application can be divided

195

Slave Interface
Controller

(AXI/PLB/FSL/Custom)

Master
(Microblaze
/PowerPC

/ARM
/Custom ICAP

Controller)

Configuration Area
Static Area

ICAP Interface

Slave Interface

TX FIFO RX FIFO

HWICAP

PR area

PR

Writing Path

Reading Path

pr pr pr pr

prpr pr

1 2 3 4

5 6 n

Seconday
Memory

pr pr pr

pr pr

PR

1 2 3

4 n

Hardware
Scheduler Block

Control Signal

Error Detection and Correction
 Block

Figure 7.13: Hardware implementation of the proposed Models

into two parts: execution time and dead time. During the dead time of the IPs,

con�guration frames of IPs will be read back into the EDACB through ICAP

port and EDACB �xes the errors. After �nishing the error correction process

EDACB will write back the con�guration frame of the IP to the con�guration

memory through ICAP if and only if error is detected in any con�guration frame

of the IP. This partitioning and selective writing process reduces overall recon-

�guration time by 2.2 ms on average (discuss further in section 7.7). Otherwise,

the complete bit �le downloading process may take more recon�guration time.

Improvement of recon�guration time (δRT) can be calculated using the mathe-

matical equation 7.28.

δRT �=R � S �D � A �
L

=
i�1

Ri � Si �Di � Ai (7.28)

Meaning of each symbols in equation 7.28 are already explained in section 7.5.

Here scanning time is equivalent to error detection time and algorithm execution

time is equivalent to error correction time. If PR is not used total con�guration

time will be read back and error correction will be executed on full con�guration

time. On the other hand after using the PR if error is not detected in a region

algorithm execution time will be zero for that region and con�guration frame of

this region need not to be written back into the con�guration memory. This will

reduce overall recon�guration time after using partial recon�guration.

The work�ow of the proposed design is described by the following steps and

shown in a �owchart in Figure 7.14

196

Download
Static bit file

Download
 Partial bit file

(PR)

Exceed
correction
capacity?

YES

NO
Download
 corrected
PR by EDAC

System
Active

Configuration Phase

Run Phase

EDAC block is unable
 to correct error

Hradware sche-
duler decide
which PR region
 will be readCalculate FEC

Read PR
 File

Correction of
 Faulty bits

Error is detected
 in PR File

YES

NO

Figure 7.14: Work�ow of the proposed error correcting models

Step1: Only the bit �le for the static part will be downloaded in the con�guration

area of the FPGA from the secondary memory. The partial bit �le of the whole

application (PR) is stored in the secondary memory along with sub-component

bit �les. Here PR � pr1 � pr2 �pri � ... � prL.

Step2: The partial bit �le is now downloaded into the partitioned region through

the proposed ICAP block. During this pass, EDAC code inside the ICAP block

calculates the forward error correction (FEC) �eld. Once downloading of static

and partial bits are completed the whole system becomes functional.

Step3: At the onset of the error correction process, based on the decision of

hardware scheduler, ICAP starts to read con�guration frames from a particular

PR region (pri) in the con�guration memory.

Step4: When error is detected in a con�guration frame of pri then error correc-

tion will be performed only on the erroneous con�guration frame. After comple-

tion of error correction all con�guration frames pri will be downloaded. If error

is not detected in any con�guration frame in the pri then partial bit �le of that

pri will not be downloaded.

7.7 Result and Performance Analysis

Proposed error correcting models are implemented on the Xilinx Kintex7 board

using Vivado platform and VHDL for design entry. Di�erent application designs

are used to generate the bit �le. We have tested our design using behavioral

simulations. To validate error detection and correction capability of the di�erent

197

Figure 7.15: Average error correction capability of di�erent error correcting mod-
els when single or small number of adjacent bits are a�ected by random error

error correcting models we have performed fault injection experiment in the con-

�guration memory of Xilinx Kintex-7 KC325T device. Di�erent number of faults

starting from 1000 to 5000 are injected randomly into the con�guration memory

through ICAP interface. Here we have proposed models for correcting both single

bit error and multi-bit errors (clustered error), occurred due to the injected fault.

7.7.1 Comparison With existing Error correcting models

Here we have considered two kinds of error: single bit errors and multi-bit clus-

tered errors. To correct errors in the con�guration memory due to SBUs and

MBUs we have proposed error correcting models based on simple parity equa-

tion (MMC in section 7.2) and erasure code (EVENODD with error detection

technique, EVENODD without any error detection in section 7.4) respectively.

We have compared their performances with the two existing models in [97]. In

order to illustrate the performances of di�erent models properly, each of them

are designated with di�erent symbols as follows: MMC with M1, model proposed

in [89] with M2, model proposed in [97] with M3, model based on EVENODD

code with separate detection technique as M4 and model based on EVENODD

code without separate detection technique by M5.

HPC in model M2 can be used to correct data a�ected by multi-bit errors but

198

when multi-bit errors occur along both row and column in a matrix, HPC may

fail to recover the data. In [89], authors give some examples of non-repairable

errors. All of these non-repairable errors can be detected, and some of them can

also corrected by proposed MMC as described in Figure 7.5(b) of section 7.2.

MMC in M1 as well as HPC in M2 show good performance against single bit

and small size clustered error compared to model M3, M4 and M5 as shown in

Figure 7.15. Here a di�erent number of errors (varying from 1000 to 5000) are

injected randomly into the con�guration memory such that they will a�ect either

single bit or a small number of adjacent bits.

In model M3, all con�guration frames are divided into multiple groups and

for each group maximum one con�guration frame can be corrected. When errors

a�ect randomly, they may be spread into multiple con�guration frames which are

not physically adjacent. The main criterion in group formation in model M3 is

that con�guration frames within the same group must be physically far apart.

Model M3 can not correct multiple erroneous con�guration frames within the

same group. In model M4, maximum two con�guration frames can be corrected

per group as described in Figure 7.11(a). Model M5 can correct errors in either

one full con�guration frame or multiple con�guration frames having errors at dif-

ferent regions in multiple con�guration frames along both horizontal and vertical

groups as described in Figure 7.11(b). As for example, if there is an error in the

�rst column in a con�guration frame in a group then model M5 can correct it

if there is no other con�guration frame within the same horizontal and vertical

group that has an error in the �rst column. This stringent rule in model M3, M4

and M5 is not good for single bit random error correction. On the other hand

model M1 and M2 correct the error using the windowing technique in each con�g-

uration frame individually. Random single bit error or small size clustered error

within a con�guration frame can be easily corrected with the di�erent window

size. From Figure 7.15 it can be observed that with the increase of the number of

injected random errors M3, M4 and M5 show more poor performance compared

to M1 and M2 as it increases occurrence probability of errors at same regions in

multiple con�guration frames within the group. In M1 and M2, average error cor-

rection capability can be improved by increasing number of iterations as described

in section 7.2 and for each iteration M1 gives better result compared to model

199

M2 as shown in Figure 7.16. From Figure 7.16 it can be observed that when the

Figure 7.16: Comparison of error correction capability between MMC and HPC

number of injected error is high, HPC gives poor result with the increase in the

number of iterations (HPC with ten iterations give poor performance compare

to HPC with two iterations). This is due to the fact that SECDED Hamming

code gives the wrong result when more than two bits are erroneous in a single

Hamming coded data frame (i.e Hamming code may �ip a bit without any er-

ror). Figure 7.17 compares memory overhead due to the parity bits, between the

proposed models M1 and M2 for di�erent memory sizes. It clearly shows that the

overhead due to the parity bits is less in MMC code compared to HPC. Hence,

both in terms of overhead and error correction coverage model M1 outperforms

M2. It can be concluded that out of the �ve models, MMC gives the best result

against single bit error and small size clustered random errors.

Model M3, M4 and M5 show good performance compared to M1 and M2 for

clustered error correction (i.e when a large number of adjacent bits are a�ected

by errors as described in Figure 7.18). In model M3, groups are formed taking

all con�guration frames at a time so it is possible to form a group taking con�g-

uration frames which are physically far apart. In M4 and M5 groups are formed

taking con�guration frames from a particular PR so there is a high probability of

occurrence of multiple erroneous frames in the same group that gives poor perfor-

mance in model M3. To increase the error correction coverage in model M4 and

200

Figure 7.17: Comparison between HPC and MMC due to redundant bits

Figure 7.18: Average error correction capability of di�erent error correcting mod-
els for clustered error

M5, groups are formed along both horizontal and vertical directions. In model

M4, separate detection technique is used to detect erroneous frames. Detection

capability of IMMC can be varied by changing depth of interleaving as shown in

Table 7.2. Meaning of he,ho,dn and dp are mentioned in section 7.3. It can be

seen from Table 7.2 minimum 14 bits are required for 100% detection coverage.

In M4 maximum, two erroneous frames along both horizontal and the vertical

group can be corrected at a time using EVENODD coding so M4 gives better

performance compared to M3 as shown in Figure 7.18. In M5, EVENODD code

201

Table 7.2: Detection capability of IMMC with di�erent interleaving depth

he=1 he=3 he=5
ho=1 ho=3 ho=5 ho=1 ho=3 ho=5 ho=1 ho=3 ho=5

d
p=

1 dn=1 57.12% 62.65% 88.87% 59.90% 62.94% 88.71% 88.99% 89.65% 97.95%
dn=3 61.79% 62.26% 88.82% 62.46% 63.19% 88.9% 89.57% 89.66% 98.07%
dn=5 95.7% 96.15% 98.93% 96.38% 96.18% 99.01% 98.83% 99.04% 99.77%

d
p=

3 dn=1 61.29% 62.96% 89.42% 63.38% 63.48% 88.99% 89.15% 89.71% 97.83%
dn=3 64.01% 63.63% 89.55% 62.62% 63.24% 89.45% 89.65% 89.55% 98.18%
dn=5 96.20% 96.34% 99.03% 96.20% 95.98% 98.70% 99.05% 99.06% 100%

d
p=

5 dn=1 96.25% 96% 98.82% 96.04% 96.38% 98.82% 98.98% 98.97% 99.84%
dn=3 96.02% 96.16% 98.78% 96.21% 96.09% 98.86% 98.92% 99.24% 99.73%
dn=5 99.51% 99.62% 99.84% 100% 99.61% 100% 99.84% 100% 100%

can correct error in a single con�guration frame or multiple con�guration frames

having errors in di�erent regions, and no separate detection technique is used to

detect erroneous frames. Practically, there is a high probability that more than

two con�guration frames in both horizontal and vertical groups may be a�ected

partially by clustered error instead of a whole con�guration frame. As error is

random is nature it can be assumed that there is high probability of clustered er-

ror in di�erent location on multiple con�guration frames. Hence, Model M5 gives

better result compared to M3 and M4 in presence of large size clustered error on

multiple con�guration frames in same group as shown in Figure 7.18. Figure 7.19

illustrates the variation of error correction coverage and ratio of redundant bits

to the con�guration bits with di�erent number of horizontal and vertical groups

for model M3, M4 and M5. Here, number on each bar indicates the ratio of re-

dundant bits to the con�guration bits. As the con�guration bits for a particular

FPGA device is �xed, variation of the ratio of redundant bits to con�guration bit

is due to the variation of redundant bits only. For Figure 7.19 the �rst term along

x-axis indicates number of horizontal group and second term indicates number of

vertical group. It is seen from the Figure 7.19 with the increase in the number of

horizontal group error correction coverage and redundant bits gradually reduces

up to certain value of horizontal group and then again increases with horizon-

tal group for model M4 and M5. Whereas redundant bits and error correction

coverage steadily increase with number of horizontal group for model M3. M4

and M5 always outperform M3 in terms of error correction coverage but for small

number of horizontal group overhead is very high for M4 and M5 compared to

M3. If value of horizontal groups and vertical groups are close to each other

202

Figure 7.19: Comparison between our proposed EVENODD model and model
proposed in [97]for di�erent size of group

Table 7.3: Power Consumption by di�erent models

Model
Power Consumption
Without PR(mw)

Power Consumption
With PR(mw)

M1 110 110
M3 [97] 150 N/A
M4 145 118
M5 130 112

redundant bits of M5 and M3 becomes almost equal. It is indicated by results

of 150 horizontal groups and 189 vertical groups in Figure 7.19. It is clearly

seen from Figure 7.19, M5 gives best performance in terms of redundant bits and

error correction capability compare to M3 and M4 if number of horizontal and

vertical groups are almost same. Users can select any number of horizontal and

vertical group as per the requirement sacri�cing in terms of redundant bits. It

can be concluded from the above discussions that models M3, M4, M5 show good

performance compared to M1 and M2 when con�guration memory is a�ected by

large size clustered error and M5 is the best candidate among M3, M4 and M5

in terms of both redundant bits and error correction coverage.

We have also measured the power consumption of our models using Xilinx

Xpower tool as described in Table 7.3. As for model M2 [89] authors did not give

power information, so we have not included M2 in Table 7.3. From the Table 7.3,

it can be observed that M1 consumes the lowest power both in PR mode and

203

Table 7.4: Fault recovery time for di�erent models

Models Average MTTR without PR(ms) Average MTTR with PR(ms)
Download and
readback time

Error Detection
Time

Error Correction
Time

Download and
readback time

Error Detection
Time

Error Correction
Time

M1 28.8 0 9.341 26.9 0 9.341
M2 28.8 0 9.341 N/A N/A N/A
M3 28.8 6.227 0.298 N/A N/A N/A
M4 28.8 6.227 0.298 26.9 6.227 0.395
M5 28.8 0 0.298 26.9 0 0.395

without PR mode among all the models discussed in this paper. This is due

to the fact that in M1, EDAC is done simultaneously within each con�guration

frame. As EDAC is separated in M3 and M4, both of them consume almost same

power without PR mode. M5 consumes less power compared to M3 and M4 as in

M5 there is no separate detection process. With PR models, M4 and M5 consume

less power compared to the situation where PR is not used. Overall it can be

concluded that use of partial recon�guration reduces power consumption which

justify its usage.

7.7.2 System Recovery Time

Based on the decision of download manager, con�guration frames from di�erent

PR regions will be read back into EDACB. Kintex FPGA used in this paper

has 28326 con�guration frames or 91548896 bits [165] and total con�guration

memory is partitioned into ten PR regions. The Speed of con�guration in FPGA

is directly proportional to the size of the bit �le and bandwidth of ICAP port. In

Kintex-7 FPGA maximum clock frequency used to drive ICAP controller is 100

MHz, available data width is 32 bit so maximum bandwidth is 3.2 Gbps [156].

To study fault recovery time of di�erent models we have used a parameter

coined as mean time to recover (MTTR) [89] which is the sum of bit �le read

back time, bit �le download time and time required for EDAC on con�guration

data. Table 7.4 compares the fault recovery time of our proposed models with

that of the existing models. It shows that download time and read back time is

same for all models because in all models size of the bit �les are same. To make

the number of con�guration frames in horizontal and vertical groups almost same

the number of con�guration frames in horizontal and vertical groups are taken

as 168 and 169 respectively but they can be changed to any other values. In

M1 and M2 no separate detection techniques are used, and error corrections are

204

done on each frame separately so error correction time is quite high in these two

models compare to other models. In model M3, error correction on each group is

performed in parallel. Similarly, M4 processes horizontal and vertical groups in

parallel so both of them have same EDAC time. In M5, no separate error detection

technique is required as in M1 and M2, but here error correction is done on each

group in parallel unlike to M1 and M2. Hence, M5 has less error correction time

compare to M1 and M2 but M5 has the same error correction time as M3 and M4.

As authors in [97] did not include partial recon�guration in their model, MTTR

values are not available for this model with partial recon�guration. Download

and read back time of con�guration frames are slightly less with PR compared

to without PR. Simpli�ed error detection technique compared to standard CRC

and selective downloading of partial bit �le after error correction helps to reduce

download time. As error correction is done on each frame individually in M1, error

correction time remains �xed in both with PR and without PR for M1. Error

detection time in M4 also remains same in both the case, but error correction time

is slightly increased with PR for M4 and M5. This is due to the fact that without

PR all con�guration frames are corrected in parallel but when PR is used error

correction is performed on the con�guration frames of a PR region only. Though

error correction time increases reduction of download and readback time due to

partial recon�guration helps to reduce MTTR.

Figure 7.20 shows error correction time for di�erent groups. Here only models

M4 and M5 are plotted because error corrections in M1 and M2 are window based

so the variation of cluster size will not a�ect their error correction time. Error

correction time of M3 and M4 are quite same, so they are not plotted separately.

It is clearly observed from Figure 7.20 that error detection and correction time

reduces as cluster size along vertical and horizontal directions become close to

each other. As there is no error detection in M5 error correction time is less in

M5 than M4. From the above discussion, it can be concluded that introduction

of PR may increase error detection and correction time for all models but overall

MTTR or fault recovery time will be reduced due to the reduction of download

time. At the same time, PR reduces the probability of suspending the normal

system operation during error correction which is the main criteria for real time

system. Hence out of the �ve models discussed M1 is best suited to mitigate the

205

Figure 7.20: Comparison of fault recovery time with di�erent group sizes for error
detection with EVENODD and single error correcting EVENODD

e�ects of random discrete error and small size clustered error and M5 shows best

performance in presence of large size clustered error in the con�guration memory.

7.8 Conclusion

Protection of con�guration memory of FPGA against soft error is a great chal-

lenge in the age of ultra-scale VLSI technology especially in di�erent critical

applications like avionics, biomedical electronics etc. In this paper, we have pro-

posed error correcting models based on simple parity equation and erasure code

to protect the con�guration memory from both single bit and multi-bit clustered

errors. The proposed error correcting models show good error correcting perfor-

mance compared to the di�erent existing models. At the same time, decoding

complexity of the codes are very less compared to that of the other ECCs. The

partial recon�guration makes the proposed system more compatible for real time

applications and also reduces fault recovery time and power consumption. We

have also proposed an ICAP based hardware scheduler which can assign priority

to the IPs for fault correction process. Experimental results prove that our pro-

posed models deliver better performance in terms of error resiliency for real time

applications.

206

Chapter 8

Conclusion and Future Scope

In this dissertation, our research work emphasizes on the design of high speed

data acquisition methodologies in the domain of embedded system applications.

We have chosen the DAQ system for HEP experiment as our example application

for developing the hardware prototype, as this application gives us an opportu-

nity to benchmark our design in terms of high throughput, error resiliency both

in communication channel as well as in the storage devices. We have used FPGA

as the target architecture for prototyping and estimating the various performance

metrics of the subsystems designed and implemented in the course of this research

work. In order to achieve complete DAQ setup we have proposed a high speed

error resilient data communication infrastructure over optical �ber that will carry

the data from the front end electronics board to the back-end computing nodes

and MBUs in communication channel are mitigated using multi-bit error correct-

ing codes like RS and orthogonal concatenated code. Our proposed DAQ system

outperforms the state of the art solutions in terms of data rate, BER, error mit-

igation, area and power consumption. Proper steps have been taken to achieve

a stabilized data transfer latency for high speed communication. We have also

proposed a method that can monitor status of di�erent modules of the DAQ sys-

tem continuously and also user can send di�erent commands to the DAQ system

remotely as per the requirement.

Electronics devices developed using FPGA as the part of the DAQ system may

be a�ected by radiation and hence proper precautions have been taken to miti-

gate the e�ect of radiation in the FPGA. Di�erent error correction methods have

207

been proposed using parity based error correcting code, erasure code, interleaving

and selective bit placement, which not only enhances error correction coverage

but also have simple decoding circuit, consume less hardware resources compared

to existing error correction techniques. Though use of hardware scheduling algo-

rithm based partial recon�guration along with error correction slightly increases

error correction time, it will not interrupt the normal system operation during

error correction. Not only con�guration memory of FPGA devices but also stor-

age elements like �ash memory may be a�ected by soft errors due to radiation

in the age of ultra large scale vlsi (ULSI) technology. With the increase of data

volume and advancement of fabrication technology density of CMOS transistor

in the memory element also increases and now a days single memory cell stores

multiple data bits like in MLC �ash memory. We have proposed a novel cluster

error correction methods for MLC �ash memory using simple linear block codes

that shows better performance compared to the state of the art solutions in terms

error correction coverage, cost and latency. An e�cient hardware implementa-

tion of the proposed method has also been proposed using parallel processing and

pipelining.

We have developed the DAQ system for HEP application and are planning

to use the DAQ system in other domains like deep space exploration, biomedical

applications where remote operation, accuracy and resiliency against fault due to

radiation are the key issues. Hence, we are trying to modify the DAQ system so

that it can be recon�gured remotely and status of the di�erent modules can be

checked using wireless communication without user intervention. In this research

we have designed and implemented FPGA based GBT transmitter and receiver

sub-systems which communicates through an optical link as a part of the DAQ

system. We were successful in testing point to point GBT communication in �Gb

data rate. In future, we will try to develop an improved setup that can perform

multiple GBT based communication using Master Salve GBT architecture to

optimize the hardware requirement as well as to synchronize all the GBT blocks

in a better way and thus reducing synchronization error.

In error correction and detection activity, we have mainly focused on logical

errors assuming that they are created by the incident radiation. Our assumption

is realistic as our error injector creates random errors in the hardware, which is

208

the most common approach in addressing hardware errors. But, truly speaking

radiation can occur due to various particles (α, β, neutrino etc.) and of vari-

ous doses and their e�ect on the semiconductor transport phenomenon must be

studied thoroughly to understand the faults that will be created due to radiation

e�ects. These fault models can guide us in understanding the error patterns that

will be created in the hardware. In future, we are planning to develop a fault

injector emulator that will realize real faults occurring in the semiconductor in

respect to various radiation environments, which will test the error correcting

capability of our proposed code in presence of various radiation sources. This

will make our hardware system more reliable and robust.

209

References

[1] F. Bagenal. Juno: Mission to jupiter's interior - and poles. In 2012 Con-

ference on Intelligent Data Understanding, pages 6�6, Oct 2012. 1

[2] The graphic [mangalyaan mars orbiter]. Engineering Technology, 8(10):14�

14, November 2013. 1

[3] O. R. Jones. Beam instrumentation systems of the large hadron collider:

tutorial 50. IEEE Instrumentation Measurement Magazine, 17(1):42�48,

February 2014. 1

[4] A. R. Donaldson and J. R. Ashton. Slac modulator availability and impact

on slc operation. In Proceedings Particle Accelerator Conference, volume 1,

pages 668�670 vol.1, May 1995. 1

[5] L. Groening
�

, P. Gerhard
�

, M. Maier
�

, S. Mickat
�

, A. Orzhekhovskaya
�

,

H. Vormann
�

, and S. Yaramyshev
�

. UNILAC Status Report, volume 2014-

1 of GSI Report, page 297 p. GSI Helmholtzzentrum für Schwerionen-

forschung, Darmstadt, 2014. 1

[6] B. F. Bohlender, J. Wiechula, M. Iberler, O. Kester, and J. Jacoby. Con-

struction, characterization and optimization of a plasma window based on

a cascade arc design for fair at the gsi hemholtz center. In 2016 IEEE In-

ternational Conference on Plasma Science (ICOPS), pages 1�1, June 2016.

2

[7] P Senger and the Cbm Collaboration. The cbm experiment at fair. Journal

of Physics: Conference Series, 50(1):357, 2006. 2, 14

210

REFERENCES

[8] B. Friman. The CBM Physics Book. Springer, 2011. 2

[9] T. Matsui and H. Satz. j©ψ suppression by quark-gluon plasma formation.

Physics Letters B, 178(4):416 � 422, 1986. 2

[10] Andrei Linde, Dmitri Linde, and Arthur Mezhlumian. From the big bang

theory to the theory of a stationary universe. Phys. Rev. D, 49:1783�1826,

Feb 1994. 2

[11] Lyndon Evans and Philip Bryant. Lhc machine. Journal of Instrumentation,

3(08):S08001, 2008. 3, 81

[12] The compressed baryonic matter experiment at fair. DPG Frühjahrstagung

�Hadronen und Kerne� Münster. iv, x, 4, 7

[13] S. Chattopadhyay. Technical Design Report for the CBM. CBM Collabo-

ration, 2014. iv, 4, 5, 49

[14] Fabio Sauli. The gas electron multiplier (gem): Operating principles and

applications. Nuclear Instruments and Methods in Physics Research Section

A: Accelerators, Spectrometers, Detectors and Associated Equipment, 805:2

� 24, 2016. Special Issue in memory of Glenn F. Knoll. 4

[15] Pavel Larionov and CBM Collaboration. Overview of the silicon tracking

system for the cbm experiment. Journal of Physics: Conference Series,

599(1):012025, 2015. 5

[16] Rama Prasad Adak, Ajit Kumar, Anand Kumar Dubey, Subhasis Chat-

topadhyay, Supriya Das, Sibaji Raha, Subhasis Samanta, and Jogender

Saini. Performance of a large size triple gem detector at high particle rate

for the cbm experiment at fair. Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, 846:29 � 35, 2017. 6

[17] K. Kasinski, R. Kleczek, P. Ot�nowski, R. Szczygiel, and P. Grybos. Sts-

xyter, a high count-rate self-triggering silicon strip detector readout ic for

high resolution time and energy measurements. In 2014 IEEE Nuclear

211

REFERENCES

Science Symposium and Medical Imaging Conference (NSS/MIC), pages

1�6, Nov 2014. 6, 48

[18] F. Lemke and U. Bruening. A hierarchical synchronized data acquisition

network for cbm. IEEE Transactions on Nuclear Science, 60(5):3654�3660,

Oct 2013. iv, 6

[19] G.-H. Asadi and M.B. Tahoori. Soft error mitigation for sram-based fpgas.

In VLSI Test Symposium, 2005. Proceedings. 23rd IEEE, pages 207�212,

May 2005. 8, 27, 28

[20] T. J. Todman, G. A. Constantinides, S. J. E. Wilton, O. Mencer, W. Luk,

and P. Y. K. Cheung. Recon�gurable computing: architectures and design

methods. IEE Proceedings - Computers and Digital Techniques, 152(2):193�

207, Mar 2005. 12

[21] Xilinx. 7 series fpgas con�gurable logic block. 2016. 12

[22] W. Zhou, P. Karlstrom, and D. Liu. Automatic synthesizable hdl generator

for nogap. In 2012 IEEE/ACIS 11th International Conference on Computer

and Information Science, pages 119�123, May 2012. 13

[23] Xilinx. Highest performance, highest-capacity radhard fpga. 2015. 14

[24] Microsemi. Design techniques for radiation-hardened fpgas. 1997. 14

[25] M. Violante, L. Sterpone, M. Ceschia, D. Bortolato, P. Bernardi, M. S.

Reorda, and A. Paccagnella. Simulation-based analysis of seu e�ects in

sram-based fpgas. IEEE Transactions on Nuclear Science, 51(6):3354�3359,

Dec 2004. 14, 28

[26] Felix Siegle, Tanya Vladimirova, Jørgen Ilstad, and Omar Emam. Mitiga-

tion of radiation e�ects in sram-based fpgas for space applications. ACM

Comput. Surv. 14

[27] K. Omata, Y. Fujita, N. Yoshikawa, M. Sekiguchi, and Y. Shida. A data

acquisition system based on a personal computer. IEEE Transactions on

Nuclear Science, 39(2):143�147, Apr 1992. 18

212

REFERENCES

[28] IAEA'. Data acquisition and analysis systems for nuclear research and

applications: Current status and trends. 1982. 18

[29] M. Morhac, I. Turzo, and J. Kristiak. Pc-camac based data acquisition

system for multiparameter measurements. IEEE Transactions on Nuclear

Science, 42(1):1�6, Feb 1995. 18

[30] J. Toledo, F.J. Mora, and H. Müller. Past, present and future of data

acquisition systems in high energy physics experiments. Microprocessors

and Microsystems, 27(8):353 � 358, 2003. 18

[31] A. J. Lankford and T. Glanzman. Data acquisition and fastbus for the

mark ii detector. IEEE Transactions on Nuclear Science, 31(1):225�229,

Feb 1984. 19

[32] Abhinav Kumar. Vme data acquisition system: Fundamentals and beyond.

Bhabha Atomic Research Centre, Mumbai, 2011. 19

[33] W. von Ruden. The aleph data acquisition system. IEEE Transactions on

Nuclear Science, 36(5):1444�1448, Oct 1989. 19

[34] E.D. Platner, A. Etkin, K.J. Foley, J.H. Goldman, W.A. Love, T.W. Morris,

S. Ozaki, A.C. Saulys, C.D. Wheeler, E.H. Willen, S.J. Lindenbaum, J.R.

Bensinger, and M.A. Kramer. Programmable combinational logic trigger

system for high energy particle physics experiments. Nuclear Instruments

and Methods, 140(3):549 � 552, 1977. 19

[35] X Vidal and R Manzano. Lhc trigger, taking a closer look at lhc. CERN.

19

[36] V. Gligorov. Triggering in high energy physics experiments. TESHEP

Summer School, CERN, 2012. 20

[37] Christian Alexander Steinle. A First Level Trigger Approach for the CBM

Experiment. disserta,Verlag, 2012. iv, 20, 21

[38] Supratik Majumder and Scott Rixner. Comparing ethernet and myrinet for

mpi communication. In Proceedings of the 7th Workshop on Workshop on

213

REFERENCES

Languages, Compilers, and Run-time Support for Scalable Systems, LCR

'04, pages 1�7, New York, NY, USA, 2004. ACM. 21

[39] W. Zheng, R. Liu, M. Zhang, G. Zhuang, and T. Yuan. Design of fpga

based high-speed data acquisition and real-time data processing system on

j-text tokamak. Fusion Engineering and Design, 89(5):698 � 701, 2014. Pro-

ceedings of the 9th IAEA Technical Meeting on Control, Data Acquisition,

and Remote Participation for Fusion Research. 22

[40] Xilinx. Virtex-6 fpga con�gurable logic block, ug364 (v1.2), 2012. 22

[41] G. Blake, R. G. Dreslinski, and T. Mudge. A survey of multicore processors.

IEEE Signal Processing Magazine, 26(6):26�37, November 2009. 22

[42] Xilinx. Zynq ultrascale+ mpsoc,technical reference manual. Mar 2017. 22

[43] C. Leong, P. Bento, P. Rodrigues, J. C. Silva, A. Trindade, P. Lousa,

J. Rego, J. Nobre, J. Varela, J. P. Teixeira, and C. Teixeira. Design and

test issues of a fpga based data acquisition system for medical imaging us-

ing pem. In 14th IEEE-NPSS Real Time Conference, 2005., pages 5 pp.�,

June 2005. 23

[44] J Adamczewski-Musch, H G Essel, N Kurz, and S Linev. Data acquisition

backbone core dabc release v1.0. Journal of Physics: Conference Series,

219(2):022007, 2010. 23

[45] J. Imrek, D. Novak, G. Hegyesi, G. Kalinka, J. Molnar, J. Vegh, L. Balkay,

M. Emri, G. Molnar, L. Tron, I. Bagamery, T. Bukki, S. Rozsa, Z. Szabo,

and A. Kerek. Development of an fpga-based data acquisition module for

small animal pet. IEEE Transactions on Nuclear Science, 53(5):2698�2703,

Oct 2006. 23

[46] Sergio Garcia Castillo and Krikor B. Ozanyan. Field-programmable data

acquisition and processing channel for optical tomography systems. Review

of Scienti�c Instruments, 76(9):095109, 2005. 23

214

REFERENCES

[47] C. C. W. Robson, A. Bousselham, and Bohm. An fpga- based general-

purpose data acquisition controller. IEEE Transactions on Nuclear Science,

53(4):2092�2096, Aug 2006. 23

[48] S. Minami, J. Ho�mann, N. Kurz, and W. Ott. Design and implementation

of a data transfer protocol via optical �ber. IEEE Transactions on Nuclear

Science, 58(4):1816�1819, Aug 2011. 23, 113

[49] E. Kadric, N. Manjikian, and Z. Zilic. An fpga implementation for a high-

speed optical link with a pcie interface. In SOC Conference (SOCC), 2012

IEEE International, pages 83�87, Sept 2012. 23, 113

[50] Hao Xu, Zhan'an Liu, Yunpeng Lu, Lu Li, Dixin Zhao, and Ya'nan Guo.

Fpga based high speed data transmission with optical �ber in trigger system

of besiii. In Nuclear Science Symposium Conference Record, 2007. NSS '07.

IEEE, volume 1, pages 818�821, Oct 2007. 23, 113

[51] L. Liu, C. Liu, Y. Peng, and D. Liu. A design of �bre channel node with pci

interface. In 2013 IEEE International Instrumentation and Measurement

Technology Conference (I2MTC), pages 1817�1822, May 2013. 24, 113

[52] C. Mattihalli. Design and realization of serial front panel data port (sfpdp)

protocol. In 2012 2nd International Conference on Consumer Electronics,

Communications and Networks (CECNet), pages 2505�2509, April 2012. 24

[53] H. Kavianipour and C. Bohm. High performance fpga-based scatter/gather

dma interface for pcie. In 2012 IEEE Nuclear Science Symposium and Med-

ical Imaging Conference Record (NSS/MIC), pages 1517�1520, Oct 2012.

24

[54] A. A. Colavita, A. Cicuttin, F. Fratnik, and G. Capello. Sortchip: a vlsi

implementation of a hardware algorithm for continuous data sorting. IEEE

Journal of Solid-State Circuits, 38(6):1076�1079, June 2003. 24

[55] W. Min. Analysis on bubble sort algorithm optimization. In Information

Technology and Applications (IFITA), 2010 International Forum on, vol-

ume 1, pages 208�211, July 2010. 24

215

REFERENCES

[56] A. Davidson, D. Tarjan, M. Garland, and J. D. Owens. E�cient paral-

lel merge sort for �xed and variable length keys. In Innovative Parallel

Computing (InPar), 2012, pages 1�9, May 2012. 24

[57] W. Zhenhua, L. Zhifeng, and L. Guoliang. Parallel optimization strategy of

heap sort algorithm under multi-core environment. In 2015 Seventh Interna-

tional Conference on Measuring Technology and Mechatronics Automation,

pages 768�771, June 2015. 24

[58] D. Mihhailov, V. Sklyarov, I. Skliarova, and A. Sudnitson. Hardware imple-

mentation of recursive sorting algorithms. In Electronic Devices, Systems

and Applications (ICEDSA), 2011 International Conference on, pages 33�

38, April 2011. 24

[59] Richard H. Maurer, Martin E. Fraeman, Mark N. Martin, and David R.

Roth. Harsh environments: Space radiation environment, e�ects, and mit-

igation. Johns Hopkins APL Technical Digest, 28(1):17�29, 2008. 24

[60] J.W. Nieto, W.N. Furman, and M.A. Wadsworth. Automatic repeat request

(arq) communication system using physical layer monitoring, july 2012. US

Patent 8,213,402. 25

[61] T. Suutari, J. Isoaho, and H. Tenhumen. High-speed serial communication

with error correction using 0.25 mu;m cmos technology. In ISCAS 2001.

The 2001 IEEE International Symposium on Circuits and Systems (Cat.

No.01CH37196), volume 4, pages 618�621 vol. 4, May 2001. 25

[62] Y. Y. Jian, H. D. P�ster, K. R. Narayanan, Raghu Rao, and R. Mazahreh.

Iterative hard-decision decoding of braided bch codes for high-speed op-

tical communication. In 2013 IEEE Global Communications Conference

(GLOBECOM), pages 2376�2381, Dec 2013. 26

[63] K. Deergha Rao. Channel coding techniques for wireless communications.

Springer Publishing Company, 2015. 26

[64] C. W. Sham, X. Chen, W. M. Tam, Y. Zhao, and F. C. M. Lau. A layered

qc-ldpc decoder architecture for high speed communication system. In 2012

216

REFERENCES

IEEE Asia Paci�c Conference on Circuits and Systems, pages 475�478, Dec

2012. 26

[65] J. Nargis, D. Vaithiyanathan, and R. Seshasayanan. Design of high speed

low power viterbi decoder for tcm system. In 2013 International Conference

on Information Communication and Embedded Systems (ICICES), pages

185�190, Feb 2013. 26

[66] Jun Jin Kong and K. K. Parhi. Viterbi decoder architecture for interleaved

convolutional code. In Conference Record of the Thirty-Sixth Asilomar

Conference on Signals, Systems and Computers, 2002., volume 2, pages

1934�1937 vol.2, Nov 2002. 26

[67] Dave Forney. Concatenated codes. Scholarpedia, 4(2):8374, 2009. 26

[68] L. Zhang, Z. Wang, Q. Hu, and J. Zhang. High speed concatenated code

codec for optical communication systems. In 2009 Symposium on Photonics

and Optoelectronics, pages 1�4, Aug 2009. 26

[69] F. Yang and Q. Hu. Iterative decoding of orthogonally concatenated code

for �ber communications. In 2013 2nd International Symposium on Instru-

mentation and Measurement, Sensor Network and Automation (IMSNA),

pages 1097�1100, Dec 2013. 26, 27

[70] Z. Borui, H. Zhuli, and X. Kefei. Performance of rs-turbo concatenated

code in aos. In Electronic Measurement Instruments (ICEMI), 2013 IEEE

11th International Conference on, volume 2, pages 983�987, Aug 2013. 26

[71] K. T. Sarika and P. P. Deepthi. A novel high speed communication system

based on the concatenation of rs and qc-ldpc codes. In 2013 Annual Inter-

national Conference on Emerging Research Areas and 2013 International

Conference on Microelectronics, Communications and Renewable Energy,

pages 1�5, June 2013. 27

[72] V. Bhatia and A. Banerjee. Vhdl implementation of two-state multiple

turbo codes. In Communications (NCC), 2010 National Conference on,

pages 1�5, Jan 2010. 27, 167

217

REFERENCES

[73] S. Gounai, T. Ohtsuki, and T. Kaneko. Performance of concatenated code

with ldpc code and rsc code. In 2006 IEEE International Conference on

Communications, volume 3, pages 1195�1199, June 2006. 27

[74] X. Liu, Q. X. Deng, and Z. K. Wang. Design and fpga implementation of

high-speed, �xed-latency serial transceivers. IEEE Transactions on Nuclear

Science, 61(1):561�567, Feb 2014. 27

[75] Xilinx. 7 series fpgas clocking resources and gtx/gth transceivers user guide.

2015. 27

[76] S. Golshan and E. Bozorgzadeh. Single-event-upset (seu) awareness in fpga

routing. In 2007 44th ACM/IEEE Design Automation Conference, pages

330�333, June 2007. 28

[77] F.L. Kastensmidt, L. Sterpone, L. Carro, and M.S. Reorda. On the optimal

design of triple modular redundancy logic for sram-based fpgas. In Design,

Automation and Test in Europe, 2005. Proceedings, pages 1290�1295 Vol.

2, March 2005. 29

[78] Daniel P. Siewiorek and Robert S. Swarz. Reliable Computer Systems (3rd

Ed.): Design and Evaluation. A. K. Peters, Ltd., Natick, MA, USA, 1998.

29

[79] B. Pratt, M. Ca�rey, J.F. Carroll, P. Graham, K. Morgan, and M. Wirthlin.

Fine-grain seu mitigation for fpgas using partial tmr. Nuclear Science, IEEE

Transactions on, 55(4):2274�2280, Aug 2008. 29

[80] S. Manz, J. Gebelein, A. Oancea, H. Engel, and U. Kebschull. Radiation

mitigation e�ciency of scrubbing on the fpga based cbm-tof read-out con-

troller. In Field Programmable Logic and Applications (FPL), 2013 23rd

International Conference on, pages 1�6, Sept 2013. 29, 170

[81] Ignacio Herrera-Alzu and Marisa López-Vallejo. Self-reference scrubber for

tmr systems based on xilinx virtex fpgas. In Proceedings of the 21st In-

ternational Conference on Integrated Circuit and System Design: Power

218

REFERENCES

and Timing Modeling, Optimization, and Simulation, PATMOS'11, pages

133�142, Berlin, Heidelberg, 2011. Springer-Verlag. 29, 148

[82] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb. Fpga partial recon�guration

via con�guration scrubbing. In 2009 International Conference on Field

Programmable Logic and Applications, pages 99�104, Aug 2009. 29, 148

[83] Leilei Song, Meng-Lin Yu, and M. S. Sha�er. 10- and 40-gb/s forward error

correction devices for optical communications. IEEE Journal of Solid-State

Circuits, 37(11):1565�1573, Nov 2002. 29

[84] C. H. Liu, S. W. Yen, C. L. Chen, H. C. Chang, C. Y. Lee, Y. S. Hsu,

and S. J. Jou. An ldpc decoder chip based on self-routing network for ieee

802.16e applications. IEEE Journal of Solid-State Circuits, 43(3):684�694,

March 2008. 29, 167

[85] R. Hentschke, F. Marques, F. Lima, L. Carro, A. Susin, and R. Reis. Ana-

lyzing area and performance penalty of protecting di�erent digital modules

with hamming code and triple modular redundancy. In Integrated Circuits

and Systems Design, 2002. Proceedings. 15th Symposium on, pages 95�100,

2002. 30

[86] Ik Joon Chang, Jae-Joon Kim, Sang Phill Park, and K. Roy. A 32 kb 10t

sub-threshold sram array with bit-interleaving and di�erential read scheme

in 90 nm cmos. Solid-State Circuits, IEEE Journal of, 44(2):650�658, Feb

2009. 30

[87] A. Sanchez-Macian, P. Reviriego, and J.A. Maestro. Enhanced detection

of double and triple adjacent errors in hamming codes through selective

bit placement. Device and Materials Reliability, IEEE Transactions on,

12(2):357�362, June 2012. 30, 151

[88] Xilinx. Logicore ip soft error mitigation controller v3.4,product guide, 2012.

30

[89] Sang Phill Park, Dongsoo Lee, and K. Roy. Soft-error-resilient fpgas using

built-in 2-d hamming product code. Very Large Scale Integration (VLSI)

219

REFERENCES

Systems, IEEE Transactions on, 20(2):248�256, Feb 2012. viii, 30, 148,

149, 159, 163, 164, 167, 179, 192, 198, 199, 203, 204

[90] Ming Zhu, Li Yi Xiao, Li Li Song, Yan Jing Zhang, and Hong Wei Luo.

New mix codes for multiple bit upsets mitigation in fault-secure memories.

Microelectronics Journal, 42(3):553 � 561, 2011. 30

[91] S. Rhee, C. Kim, J. Kim, and Y. Jee. Concatenated reed-solomon code with

hamming code for dram controller. In 2010 Second International Confer-

ence on Computer Engineering and Applications, volume 1, pages 291�295,

March 2010. 30

[92] M. Poolakkaparambil, J. Mathew, A. M. Jabir, and S. P. Mohanty. Low

complexity cross parity codes for multiple and random bit error correc-

tion. In Thirteenth International Symposium on Quality Electronic Design

(ISQED), pages 57�62, March 2012. 30

[93] C. Argyrides, D. K. Pradhan, and T. Kocak. Matrix codes for reliable

and cost e�cient memory chips. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 19(3):420�428, March 2011. 30, 140, 141, 143,

144, 171, 173, 179, 192

[94] Lambert M. Surhone, Mariam T. Tennoe, and Susan F. Henssonow. Reed-

Muller Code. Betascript Publishing, Mauritius, 2010. 30

[95] L. Frigerio, M. A. Radaelli, and F. Salice. Convolutional coding for seu

mitigation. In 2008 13th European Test Symposium, pages 191�196, May

2008. 30

[96] J. S. Plank. Erasure codes for storage applications. Tutorial Slides,

presented at FAST-2005: 4th Usenix Conference on File and Stor-

age Technologies, http://web.eecs.utk.edu/$~$plank/plank/papers/

FAST-2005.html, 2005. 30

[97] M. Ebrahimi, P.M.B. Rao, R. Seyyedi, and M.B. Tahoori. Low-cost mul-

tiple bit upset correction in sram-based fpga con�guration frames. Very

220

http://web.eecs.utk.edu/$~$plank/plank/papers/FAST-2005.html
http://web.eecs.utk.edu/$~$plank/plank/papers/FAST-2005.html

REFERENCES

Large Scale Integration (VLSI) Systems, IEEE Transactions on, PP(99):1�

1, 2015. viii, ix, 30, 147, 170, 171, 172, 185, 191, 198, 203, 205

[98] S. Punnekkat and A. Burns. Analysis of checkpointing for schedulability

of real-time systems. In Real-Time Computing Systems and Applications,

1997. Proceedings., Fourth International Workshop on, pages 198�205, Oct

1997. 31, 172

[99] A. Sari, M. Psarakis, and D. Gizopoulos. Combining checkpointing and

scrubbing in fpga-based real-time systems. In VLSI Test Symposium (VTS),

2013 IEEE 31st, pages 1�6, April 2013. 31

[100] A. Ziv and J. Bruck. An on-line algorithm for checkpoint placement. Com-

puters, IEEE Transactions on, 46(9):976�985, Sep 1997. 31

[101] Ying Zhang and K. Chakrabarty. A uni�ed approach for fault tolerance

and dynamic power management in �xed-priority real-time embedded sys-

tems. Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 25(1):111�125, Jan 2006. 31

[102] F. Dittmann and S. Frank. Hard real-time recon�guration port scheduling.

In Design, Automation Test in Europe Conference Exhibition, 2007. DATE

'07, pages 1�6, April 2007. 31, 172

[103] Tae Rim Park, Jae Hyun Park, and Wook Hyun Kwon. Reducing os over-

head for real-time industrial controllers with adjustable timer resolution. In

Industrial Electronics, 2001. Proceedings. ISIE 2001. IEEE International

Symposium on, volume 1, pages 369�374 vol.1, 2001. 31

[104] K. Wyllie P. Moreira, J. Christiansen. Gbtx manual, v0.15, 2016. iv, 35,

36, 45

[105] National Aeronautics and Texas Space Administration. Tutorial on reed-

solomon error correction coding. 38, 39

[106] B. Tiwari and R. Mehra. Design and implementation of reed solomon de-

coder for 802.16 network using fpga. In 2012 IEEE International Conference

on Signal Processing, Computing and Control, pages 1�5, March 2012. 41

221

REFERENCES

[107] Xilinx. 7 series fpgas gtx/gth transceivers (ug476). 2016. 42, 103

[108] R. Szczygiel W. Zubrzycka K. Kasinski, W. Zabolotny. Sts/much-xyter2

manual v1.30, 2017. v, 47, 50, 51, 68

[109] Thomas Walter, Frank Ludwig, Kay Rehlich, and Holger Schlarb. Novel

Crate Standard MTCA.4 for Industry and Research. In Proceedings, 4th In-

ternational Particle Accelerator Conference (IPAC 2013): Shanghai, China,

May 12-17, 2013, page THPWA003, 2013. 53

[110] W.M. Zabolotny, G. Kasprowicz, A.P. Byszuk, D. Emschermann, M. Gu-

mi«ski, B. Juszczyk, J. Lehnert, W.F.J.Müller, K. Po¹niak, and R. Roma-

niuk. Versatile prototyping platform for data processing boards for cbm

experiment. Journal of Instrumentation, 11(02):C02031. 55

[111] E. F. Dierikx, A. E. Wallin, T. Fordell, J. Myyry, P. Koponen, M. Merimaa,

T. J. Pinkert, J. C. J. Koelemeij, H. Z. Peek, and R. Smets. White rabbit

precision time protocol on long-distance �ber links. IEEE Transactions

on Ultrasonics, Ferroelectrics, and Frequency Control, 63(7):945�952, July

2016. 55

[112] Texas Instruments. Sn74avc8t245 8-bit dual-supply bus transceiver with

con�gurable voltage translation and 3-state output. 2017. 55

[113] A. Cantoni, J. Walker, and T. D. Tomlin. Characterization of a �ip-�op

metastability measurement method. IEEE Transactions on Circuits and

Systems I: Regular Papers, 54(5):1032�1040, May 2007. 56

[114] Analog Devices. 16x16 digital crosspoint switch. 2017. 57

[115] M. Jiménez-López, J. L. Gutiérrez-Rivas, J. Díaz, E. López-Marín, and

R. Rodríguez. Wr-zen: Ultra-accurate synchronization soc based on zynq

technology. In 2016 European Frequency and Time Forum (EFTF), pages

1�4, April 2016. 57

[116] L. Meder, M. Dreschmann, O. Sander, and J. Becker. A signal distribution

board for the timing and fast control master of the cbm experiment. Journal

of Instrumentation, 11(02):C02001, 2016. v, 58, 59

222

REFERENCES

[117] Robert Frazier and et.al. The IPbus Protocol,An IP based

control protocol for ATCA. CERN, Switzerland, 2013.

http://ohm.bu.edu/ chill90/ipbus/ipbus_protocol_v2_0.pdf. 59

[118] Behrouz A. Forouzan. Data Communications and Networking. The

McGraw-Hill Companies., New Yorkr, 4th edition. 59

[119] Xilinx. Ethernet 1000 base-x pcs/pma or sgmii v14.3 (pg047). 2014. 59

[120] Xilinx. Tri-mode ethernet mac v9.0. 2016. 59

[121] L. Antoni, R. Leveugle, and B. Feher. Using run-time recon�guration for

fault injection applications. In IMTC 2001. Proceedings of the 18th IEEE

Instrumentation and Measurement Technology Conference. Rediscovering

Measurement in the Age of Informatics (Cat. No.01CH 37188), volume 3,

pages 1773�1777 vol.3, 2001. 74

[122] Wang Lixin, Song Wei, and Lv Chao. Implementation of high speed real

time data acquisition and transfer system. In 2009 4th IEEE Conference

on Industrial Electronics and Applications, pages 382�386, May 2009. 78

[123] KM Potter. Luminosity measurements and calculations. 1994. 81

[124] Faisal Rasheed Lone, Arjun Puri, and Sudesh Kumar. Article: Performance

comparison of reed solomon code and bch code over rayleigh fading channel.

International Journal of Computer Applications, 71(20):23�26, June 2013.

Full text available. vi, 85, 86

[125] K.M.Cheung and L.Swanson. A performance comparison between block

interleaved and helically interleaved concatenated coding system, 1989. 87

[126] Xilinx. 7 series fpgas clocking resources and gtx/gth transceivers user guide.

2011. 88

[127] T. Takemoto, F. Yuki, H. Yamashita, S. Tsuji, Y. Lee, K. Adachi, K. Shin-

oda, Y. Matsuoka, K. Kogo, S. Nishimura, M. Nido, M. Namiwaka,

T. Kaneko, T. Sugimoto, and K. Kurata. 100-gbps cmos transceiver for

multilane optical backplane system with 1.3-cm2 footprint. In 2011 37th

223

REFERENCES

European Conference and Exhibition on Optical Communication, pages 1�3,

Sept 2011. 102

[128] Alper Demir. Noise analysis for optical �ber communication systems.

In Proceedings of the 2003 IEEE/ACM International Conference on

Computer-aided Design, ICCAD '03, pages 441�, Washington, DC, USA,

2003. IEEE Computer Society. 108

[129] F. Costa and et.al. The alice c-rorc gbt card, a prototype readout solution

for the alice upgrade. In 2016 IEEE-NPSS Real Time Conference (RT),

pages 1�5, June 2016. 113

[130] Takuya Futatsuyama and et.al. A 113mm2 32gb 3b/cell nand �ash mem-

ory. In 2009 IEEE International Solid-State Circuits Conference - Digest

of Technical Papers, pages 242�243, Feb 2009. 115

[131] N. Shibata and et.al. A 70 nm 16 gb 16-level-cell nand �ash memory. IEEE

Journal of Solid-State Circuits, 43(4):929�937, April 2008. 115

[132] L. M. Grupp, A. M. Caul�eld, J. Coburn, S. Swanson, E. Yaakobi, P. H.

Siegel, and J. K. Wolf. Characterizing �ash memory: Anomalies, obser-

vations, and applications. In 2009 42nd Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 24�33, Dec 2009. 115

[133] N. Mielke, T. Marquart, Ning Wu, J. Kessenich, H. Belgal, E. Schares,

F. Trivedi, E. Goodness, and L. R. Nevill. Bit error rate in nand �ash mem-

ories. In 2008 IEEE International Reliability Physics Symposium, pages

9�19, April 2008. 115

[134] L. Pantisano and K. P. Cheung. Stress-induced leakage current (silc) and

oxide breakdown: are they from the same oxide traps? IEEE Transactions

on Device and Materials Reliability, 1(2):109�112, Jun 2001. 115

[135] Z. Cui, Z. Wang, and X. Huang. Multilevel error correction scheme for

mlc �ash memory. In 2014 IEEE International Symposium on Circuits and

Systems (ISCAS), pages 201�204, June 2014. 116

224

REFERENCES

[136] D. Rossi and C. Metra. Error correcting strategy for high speed and high

density reliable �ash memories. Journal of Electronic Testing, 19(5):511�

521, Oct 2003. 116

[137] Varsha Regulapati. Error correction codes in nand �ash memory. pages

1�66, December 2015. 116

[138] E. Ibe, H. Taniguchi, Y. Yahagi, K. i. Shimbo, and T. Toba. Impact of

scaling on neutron-induced soft error in srams from a 250 nm to a 22 nm

design rule. IEEE Transactions on Electron Devices, 57(7):1527�1538, July

2010. vii, 116, 170

[139] H. Choi, W. Liu, and W. Sung. Vlsi implementation of bch error correction

for multilevel cell nand �ash memory. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 18(5):843�847, May 2010. 116

[140] S. Li and T. Zhang. Improving multi-level nand �ash memory storage

reliability using concatenated bch-tcm coding. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 18(10):1412�1420, Oct 2010. 116

[141] C. Yang, Y. Emre, and C. Chakrabarti. Product code schemes for error

correction in mlc nand �ash memories. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 20(12):2302�2314, Dec 2012. 116

[142] Jim Handy. Flash technology:annual update(objective analysis). pages 1�

35, 2015. 118

[143] R.H.Fowler and L.Nordheim. Electron emission in intense electric �elds.

Proceedings of the Royal Society, Part A, 119:173�181, Mar 1928. 118

[144] M. Ohkawa and et.al. A 98 mm2 die size 3.3-v 64-mb �ash memory with fn-

nor type four-level cell. IEEE Journal of Solid-State Circuits, 31(11):1584�

1589, Nov 1996. 120

[145] K. Takeuchi, T. Tanaka, and T. Tanzawa. A multipage cell architecture for

high-speed programming multilevel nand �ash memories. IEEE Journal of

Solid-State Circuits, 33(8):1228�1238, Aug 1998. 121

225

REFERENCES

[146] Kathrin Schacke. On the kronecker product. Master's thesis, University of

Waterloo, 2004. 123

[147] L. J. Saiz-Adalid, P. Reviriego, P. Gil, S. Pontarelli, and J. A. Maestro.

Mcu tolerance in srams through low-redundancy triple adjacent error cor-

rection. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems, 23(10):2332�2336, Oct 2015. 133, 143

[148] A. Neale and M. Sachdev. A new sec-ded error correction code subclass

for adjacent mbu tolerance in embedded memory. IEEE Transactions on

Device and Materials Reliability, 13(1):223�230, March 2013. vii, 138, 139,

140, 142, 143, 144, 145

[149] Xilinx. Device reliability report,second half 2015. UG116 (v10.4), pages

1�110, April 2016. 141

[150] Sebastian Andreas Manz. Radiation mitigation for SRAM-Based FPGAs

in the CBM experiment. PhD thesis, 2015. 141

[151] Martin S. Won. Meeting the performance and power imperative of the

zettabyte era with generation 10, 2016. 147

[152] Daniel P. Siewiorek and Robert S. Swarz. Reliable Computer Systems (3rd

Ed.): Design and Evaluation. A. K. Peters, Ltd., Natick, MA, USA, 1998.

147

[153] M. Fayyaz and T. Vladimirova. Detection of silent data corruption in fault-

tolerant distributed systems on board spacecraft. In 2014 NASA/ESA Con-

ference on Adaptive Hardware and Systems (AHS), pages 202�209, July

2014. 148

[154] P. Reviriego, M. F. Flanagan, S. F. Liu, and J. A. Maestro. On the use of

euclidean geometry codes for e�cient multibit error correction on memory

systems. IEEE Transactions on Nuclear Science, 59(4):824�828, Aug 2012.

148

226

REFERENCES

[155] A. Sánchez-Macián, P. Reviriego, and J. A. Maestro. Hamming sec-daed

and extended hamming sec-ded-taed codes through selective shortening and

bit placement. IEEE Transactions on Device and Materials Reliability,

14(1):574�576, March 2014. 148

[156] Xilinx. 7 series fpgas con�guration (user guide). 161, 204

[157] Priya Mathew, Lismi Augustine, Sabarinath G., and Tomson Devis. Hard-

ware implementation of (63, 51) BCH encoder and decoder for WBAN using

LFSR and BMA. CoRR, abs/1408.2908, 2014. 167

[158] Xilinx. Single error correction and double error detection, 2006. 167

[159] R. C. Baumann. Radiation-induced soft errors in advanced semiconduc-

tor technologies. IEEE Transactions on Device and Materials Reliability,

5(3):305�316, Sept 2005. 170

[160] J. Allison and K. Amako et.al. Geant4 developments and applications.

IEEE Transactions on Nuclear Science, 53(1):270�278, Feb 2006. 170

[161] Earl Fuller, Michael Ca�rey, Anthony Salazar, Carl Carmichael, and Joe

Fabula. Radiation testing update, seu mitigation, and availability analysis

of the virtex fpga for space re-con�gurable computing�, presented at the

ieee nuclear and space radiation e�ects conference. In in Proc. International

Conference on Military and Aerospace Programmable Logic Devices, 2000.

170

[162] K Aamodt and the Alice Collaboration. The alice experiment at the cern

lhc. Journal of Instrumentation, 3(08):S08002, 2008. 170

[163] T. VanCourt and M. C. Herbordt. Application-speci�c memory interleav-

ing enables high performance in fpga-based grid computations. In 2006

14th Annual IEEE Symposium on Field-Programmable Custom Computing

Machines, pages 305�306, April 2006. 181

[164] M. Blaum, J. Brady, J. Bruck, and Jai Menon. Evenodd: an e�cient scheme

for tolerating double disk failures in raid architectures. Computers, IEEE

Transactions on, 44(2):192�202, Feb 1995. 183, 184, 185, 191, 192

227

REFERENCES

[165] V. Gligorov. Triggering in high energy physics experiments. TESHEP

Summer School, CERN, 2012. 204

228

	Contents
	Synopsis
	List of Figures
	List of Tables
	1 Introduction
	1.1 Compressed Baryonic Matter Experiment
	1.1.1 Muon Chamber (MUCH) Detector

	1.2 Architecture of Data Acquisition System
	1.2.1 Errors in DAQ system and its mitigation
	1.2.2 Microprocessor and Micro-controller
	1.2.3 Application Specific Integrated Circuits
	1.2.4 Field Programmable Gate Array (FPGAs)
	1.2.5 FPGA Design Flow

	1.3 Research Motivation
	1.4 Research Objective
	1.5 Organization of the Thesis

	2 Related Research Work
	3 Integration of MUCH-XYTER with DPB using FPGA based GBTx Emulator
	3.1 Introduction
	3.2 FPGA based GBTx Emulator
	3.3 Muon Chamber X-Y Time Energy Readout ASIC
	3.4 Data Processing Board
	3.4.1 Communication with time and fast control
	3.4.2 Communication through slow control interface

	3.5 Integration of DPB with MUCH-XYTER using GBTx Emulator
	3.6 Results and Performance Analysis
	3.7 Conclusion

	4 An FPGA based High Speed Error resilient Data Aggregation and Control System for Radiation Environment
	4.1 Introduction
	4.2 System Design for High Speed DAQ
	4.2.1 Optical Interface Board (OIB)
	4.2.1.1 Frame Aligner and Pattern Search Block

	4.2.2 Computer Interface Module(CIM)
	4.2.3 Overview of the data flow

	4.3 Latency Optimization
	4.4 Error Mitigation in FPGA devices
	4.5 Results and Performance Analysis
	4.6 Conclusion

	5 Latency optimized clustered error correction for mult-level memory chips using LSBCPC
	5.1 Introduction
	5.2 MLC NAND FLASH Memory Background
	5.2.1 Error distribution in MLC Flash

	5.3 Linear Shortened Block code based Product code
	5.4 Encoding/Decoding using LSBCPC and its hardware implementation
	5.5 Results and Performance Analysis
	5.5.1 Cost Analysis

	5.6 Conclusion

	6 Soft error mitigation in Configuration memory of FPGA using HPC with selective bit placement and Frame Interleaving
	6.1 Introduction
	6.2 Proposed Hamming Product code with frame interleaving and selective bit placement
	6.2.1 Selective bit placement strategy

	6.3 Hardware implementation of HPCFISBP
	6.4 Result and Performance Analysis
	6.5 Conclusion

	7 Efficient Dynamic Priority Based Soft Error Mitigation Techniques For Configuration Memory of FPGA Hardware
	7.1 Introduction
	7.2 Proposed Modified Matrix Code Algorithm
	7.3 Error Detection using Interleaved MMC
	7.4 Error Detection and correction using EVENODD coding
	7.4.1 Overview of EVENODD coding
	7.4.2 Recovery based on EVENODD code

	7.5 Dynamic Priority Based Algorithm for download manager
	7.6 Hardware Implementation and its workflow
	7.7 Result and Performance Analysis
	7.7.1 Comparison With existing Error correcting models
	7.7.2 System Recovery Time

	7.8 Conclusion

	8 Conclusion and Future Scope
	References

