

Heavy-ion physics at the high-energy frontier

UNIVERSITÄT HEIDELBERG ZUKUNFT

GST

Silvia Masciocchi GSI Darmstadt and Heidelberg University

EMMI Physics Day 2017, GSI, November 28, 2017

- Heavy-ion physics: the high temperature and low baryon density regime
- Experimental program at the LHC: from now ...
- ... to the high-luminosity LHC era
- Heavy ions at the Future Circular Collider: physics opportunities

Explore strongly-interacting matter at extreme conditions

Extreme temperatures $\approx 160 \text{ MeV} \approx 2 \times 10^{12} \text{ K}$ (Sun core: $15 \times 10^{6} \text{ K}$)

Extreme densities

≈ few GeV/fm³ (few times ground-state nuclear matter. $ε_{proton} ≈ 0.44 \text{ GeV/fm}^3$)

to study fundamental properties of QCD:

compressibility of nuclear matter, confinement, QCD-matter phases, hadronization, transport coefficients, etc.

Extreme conditions

Extreme conditions

Heavy ions at the LHC: Run 2 (2015-2018)

²⁰⁸Pb ions: $E_{b} = 6.37 \text{ Z TeV}$ $\sqrt{s} = 2 E_{b} > 1 \text{ PeV}$ $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Design luminosity: 1 x 10²⁷ cm⁻²s⁻¹ surpassed by factor 2-3.6

LHC superb performance

Goal (including 2018): ~1 nb⁻¹ integrated luminosity (including rare triggers)

Heavy-ion collisions at the LHC

Heavy-ion collision evolution

Non-equilibrium evolution at early times:

• Gluon dominated, fast thermalization

Local thermal and chemical equilibrium: QGP

- Evolution ↔ relativistic fluid dynamics
- Expansion, dilution, cooling

Chemical freeze-out:

- Below a critical temperature, hadrons are formed
- Inelastic collisions cease → particle yields
 Kinetic freeze-out:
- Elastic collisions cease \rightarrow spectra

Therm. time ~ O(0.1 fm/c) $T_0 \sim O(500 \text{ MeV})$

Homog. Volume ~ 5000 fm³ Decoupling time ~ 10 fm/c

Questions

- Transport properties
 Parton energy loss
- Deconfinement / confinement
 Phase boundary
- Hadronization mechanism Loosely bound objects

- Medium-induced gluon radiation
- Collisions with medium constituents

Quantifier: the nuclear modification factor

$$R_{AA} = \frac{\text{Yield in } AA}{\text{Yield in } pp} \cdot \frac{1}{N_{coll}}$$

as function of $p_{T,}$ y and centrality
binary collisions (Glauber)

Probes:

- Vector bosons (do not interact strongly!)
- Light-quark hadrons

Nuclear modification factor

$$R_{AA} = \frac{\text{Yield in } AA}{\text{Yield in } pp} \cdot \frac{1}{N_{\text{coll}}}$$

as function of p_{T} y and centrality

Probes:

Charm and beauty quarks
 Dependence on color charge (q/g) and parton mass

Probes:

 D and D_s mesons: Modification of hadronization in presence of a medium? fragmentation vs recombination

Charmonium production

Charmonium production

Idea already proposed before the LHC: abundance of charm and deconfinement

Braun-Munzinger, Stachel, Nature 448 (2007) 302-309

Heavy-ion physics at the high-energy frontier

Charmonium production

Abundance of J/ ψ regenerated in the QGP or newly generated at the phase boundary by statistical hadronization, at low p_{τ}

 \rightarrow signature of deconfinement

PLB734(2014)314 PLB766(2017)212

 J/ψ regenerated in the QGP or newly generated at the phase boundary: statistical hadronization, transport models, co-movers

Large uncertainties: shadowing, open charm cross section Progress on both theory and experiment sides needed to reach a more precise description

(Anti-)(hyper-)nuclei production

Abundant production of light nuclei: dN/dy ALICE 10² → A=2: deuteron (many) 10 → A=3: ³He, ³_∧H (good statistics) → A=4: ⁴He (few) 10^{-1} 10⁻² 10⁻³ 10^{-4} **10**⁻⁵ 10⁻⁶ 0-10% Pb-Pb, $\sqrt{s_{_{\rm NN}}}$ = 2.76 TeV 10⁻⁷ arXiv[.] 1710.07531 10⁻⁸ -3 -2 2 3 _4 _1 n 1 4 A

- Hadronization mechanism? Thermal production or coalescence?
- Some very loosely bound (Λ separation energy in ³_ΛH is ~ 0.13 MeV): how do they get formed at a freeze-out at 154 MeV?
- Precise lifetime and BR measurements needed

EMMI workshop, Torino, 2017 https://indico.gsi.de/event/6301/

S.Masciocchi@gsi.de

Heavy-ion high-luminosity LHC

During the Long Shutdown 2 (2019-2020) at the LHC:

- Increase total number of lead nuclei stored
- Upgrade of LHC collimators
 - Peak Luminosity > $6x10^{27}$ cm⁻²s⁻¹ \rightarrow **50 kHz Pb-Pb interaction rate**

Foreseen integrated luminosity ~ 3 nb⁻¹ / month

HL-LHC for heavy ions starts in 2021 !

Heavy-ion high-luminosity LHC from 2021!

Same collision energy $\sqrt{s_{_{NN}}} = 5 - 5.5 \text{ TeV}$

ALICE physics case:

- Low transverse momentum observables (reduced material budget)
- Minimum bias data taking (no triggers) \rightarrow 100 x statistics
- Need for continuous readout of detectors \rightarrow >3 TBytes/s
- \rightarrow online data processing with strong volume reduction

Letter of intent: https://cds.cern.ch/record/1475243/ ITS TDR: https://cds.cern.ch/record/1625842?In=en

Heavy-ion high-luminosity LHC from 2021!

Same collision energy $\sqrt{s_{_{NN}}} = 5 - 5.5 \text{ TeV}$

ALICE physics case:

- Low transverse momentum observables (reduced material budget)
- Minimum bias data taking (no triggers) \rightarrow 100 x statistics
- Need for continuous readout of detectors \rightarrow >3 TBytes/s
- \rightarrow online data processing with strong volume reduction

Letter of intent: https://cds.cern.ch/record/1475243/ ITS TDR: https://cds.cern.ch/record/1625842?ln=en 13 nb⁻¹

Workshop on the physics of HL-LHC, and perspectives at HE-LHC

■ 30 Oct 2017, 09:00 → 1 Nov 2017, 19:00 Europe/Zurich

• 500-1-001 - Main Auditorium (CERN)

https://indico.cern.ch/event/647676/

General strategy and running plans in discussion in the HL-LHC heavy-ion working group

 \rightarrow document by end of 2018 as input for the European Strategy discussion

HI HL-LHC: physics program (some)

Very high statistics, improved detectors:

• Heavy flavors

Heavy quarkonia
 production

• (Anti-)(hyper-)nuclei production

HI HL-LHC: physics program (some)

Very high statistics, improved detectors:

- Heavy flavors
- •
- Precision measurements c, b hadrons
 - Baryons/mesons: hadronization mech.
 - New observables (e.g. $D^0 v_1 \leftrightarrow B$ field)

- Heavy quarkonia ______
 production
- Large statistics J/ψ, ψ(2S) → pin down production mechanism
- X_c, Y(1S,2S,3S), flow

- (Anti-)(hyper-)nuclei production
- What is now done for A=2,3 will be extended to A=4: ⁴_AH, ⁴_AHe
- Precision measurements: 40k ³_AH

ALICE upgrades: work at GSI

Framing and testing of large area GEM foils

ALICE upgrades: work at GSI

Framing and testing of large area GEM foils

Chamber body prepared (Hd, F)

ALICE upgrades: work at GSI

Framing and testing of large area GEM foils

Beyond the LHC

Design study by international collaboration, initiated by CERN in 2014, for a

Future Circular Collider

- Proton-proton collider (FCC-hh) ~16 T → 100 TeV pp in 100 km ~20 T → 100 TeV pp in 80 km
 → defining infrastructure requirements
- e⁺e⁻ collider (FCC-ee) as potential intermediate step
- p-e (FCC-he) option
- Ion program!

Scope: CDR and cost review for the next European strategy (2019) Starting date targeted for 2035-2040

→ p-Pb: $\sqrt{s_{NN}} = 62.8 \text{ TeV}$

Pre-accelerator chain for ions to be studied. 1 or 2 experiments. $\int L_{Pb-Pb}$:

 Baseline:
 Ultimate:

 1 exp. L_{int} /run:
 35nb⁻¹
 110nb⁻¹

 2 exp. L_{int} /run:
 23nb⁻¹
 65nb⁻¹

3nb⁻¹ at HL-LHC

Heavy ions at the FCC

Tentative Run Schedule

Similar strategy as for LHC:

- 1-month-long Heavy-lon runs before each Technical Stop or Shutdown
- 3 such ion runs per FCC-Run of 5 years

15 x 1 month **Ion-Physics time**

29/09/2017

M. Schaumann - Update on FCC-HI Operation and Luminosity

FCC-HI: physics opportunities

Wiki: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/Heavylons HI dedicated meetings: https://indico.cern.ch/category/6068/

Global properties:

CERN Yellow Report (DOI: 10.23731/CYRM-2017-003.635)

				$dN/dn \times 1.8$
Quantity	Pb–Pb 2.76 TeV	Pb–Pb 5.5 TeV	Pb–Pb 39 TeV	
$\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ at $\eta=0$	1600	2000	3600	dE _τ /dη x 2.2
Total $N_{\rm ch}$	17000	23000	50000	
$\mathrm{d}E_\mathrm{T}/\mathrm{d}\eta$ at $\eta=0$	1.8–2.0 TeV	2.3–2.6 TeV	5.2–5.8 TeV	volume v 1.8
Homogeneity volume	5000 fm^3	$6200 \ { m fm}^3$	11000 fm ³	
Decoupling time	10 fm/c	11 fm/ <i>c</i>	13 fm/ <i>c</i>	d. time x 1.3
ε at $\tau=1~{\rm fm/}c$	12–13 GeV/fm ³	16–17 GeV/fm ³	35–40 GeV/fm ³	
				$\epsilon_{1 fm/c} \times 3$

Global properties at $\sqrt{s_{NN}}$ = 2.76 TeV (0-5% centrality interval) extrapolated to 5.5 and 39 TeV

S.Masciocchi@gsi.de

Heavy-ion physics at the high-energy frontier

High energy \rightarrow large production cross section for all hard probes

CHARM

Large increase of charm total yield:

- Larger yields of primary charm from hard-scattering processes between partons of the incident nuclei
- Higher QGP temperature → secondary or thermal charm production, from in-medium interacting partons (T > 500 MeV)

New relevant dof Effect on the QGP equation of state? Under debate

K. Zhou et al. PLB758 (2016) 434

High energy \rightarrow large production cross section for all hard probes

HEAVY QUARKONIA: charmonium and bottomonium

Dissociation by color screening and (re)generation by statistical hadronization: also true for bottom, at FCC temperature and σ_{hh} ? Thermalization?

Statistical hadronization model (A. Andronic et al.)

Heavy-ion physics at the high-energy frontier

Access to very low x with p-Pb and ultraperipheral Pb-Pb collisions:

Test whether (perturbative) saturation lies in the accessible kinematic region (coverage of very forward region)

FCC-HI: more physics opportunities

• VERY high multiplicity in pp and p-Pb

 Photon-photon scattering in pp, p-Pb, Pb-Pb (UPC)

 single- and pair-top production: energy loss, time scales (boosted), nPDF

• Stay open for the unknown !!!

FCC-hh: detector options

Reference detector (pp physics driven) for the Conceptual Design Report

- 4T 10m solenoid + forward solenoids: no shielding coil
- Silicon tracker
- Barrel ECAL LAr
- Barrel HCAL Fe/Sci
- Endcap HCAL/ECAL LAr
- Forwards HCAL/ECAL LAr

Needs for heavy-ion physics?

Low (transverse) momentum. Particle identification Dedicated experiment necessary? Special settings for operation with heavy ions? Focus on forward rapidity?

Werner Riegler

- Heavy-ion physics: the high temperature and low baryon density regime place of excellence to study nonperturbative QCD, confinement, hadroniz.
- Experimental program at the LHC: now and in the high-luminosity era HI HL-LHC: high statistics for precision measurements
- Heavy ions at the Future Circular Collider:
 physics opportunities

quark-gluon plasma at higher energy densities \rightarrow access to ultimate precision and new probes

Spares

HI HL-LHC: heavy flavors

Baryon/meson ratio:

hadronization via

recombination in medium or

Very high statistics and improved spatial resolution:

- Precision measurements of charm and beauty hadrons
- With heavy-quark baryons, investigation of hadronization mechanism
- Access to new observables: directed flow of D⁰ (early time magnetic field)

c and b hadrons: Energy loss vs parton mass

D meson elliptic flow: Charm thermalization

S.Masciocchi@gsi.de

Heavy-ion physics at the high-energy frontier

HI HL-LHC: heavy quarkonia production

Discrimination between different charmonium production mechanisms (models) will be possible with high statistics ψ(2S) measurements

J.Phys. G41 (2014) 087001 LHCC-I-022-ADD-1 EPJ C76 (2016) 3, 107

The physics we can now do for A=2 and A=3 will become possible for

Heavy ions: more than 40 years

1974-1975

GSI-Marburg-Berkeley collaboration

R. Bock, R. Stock, H. Gutbrod et al. Bevalac / Bevatron: E_{kin}/A ~ 1 GeV

1986: AGS (BNL) and SPS (CERN) 1992: SIS (GSI)

2000: RHIC (BNL)

2010: LHC (CERN)

FUTURE: FAIR, NICA (JINR) FCC

FCC layout

FCC-HI: other ion species

- From injectors: possibly similar number of charges per bunch \rightarrow more ions per bunch for lower Z
- Reduced contribution of ultra-peripheral electromagnetic processes: σ (bound-free pair production) ~ Z⁷ $\sigma(EMD) \sim Z^4$

Increased luminosity Inst. Nucleon-Nucleon Luminosity per Bunch 2.0 Ar40 Ar40 Cu63 $\mathcal{L}_{\rm NN} [10^{30} {\rm cm}^{-2} {\rm s}^{-1}]$ Xe129 1.5- Au197 Pb208 U238 nucleon-nucleon Pb208 Luminosity 0.0 5 10 15 0 time [h]

Physics cases will be studied

lifetime:

