Ultraperipheral collisions at the LHC

Evgeny Kryshen (Petersburg Nuclear Physics Institute, Russia)

EMMI Physics day 2017 28 November 2017

LHC as a $\gamma\gamma$, γp and γPb collider

Ultra-peripheral (UPC) collisions: b > R₁+R₂

 \rightarrow hadronic interactions strongly suppressed

High photon flux

 \rightarrow well described in Weizsäcker-Williams

approximation (quasi-real photons)

- \rightarrow flux proportional to Z²
- \rightarrow high cross section for γ -induced reactions

Pb-Pb UPC at LHC can be used to study γ- γ, γ-p, γ-Pb interactions at higher center-of-mass energies than ever before

Recent reviews on UPC physics: A.J. Baltz et al, Phys. Rept. 458 (2008) 1 J.G. Contreras, J.D. Tapia Takaki. Int.J.Mod.Phys. A30 (2015) 1542012

From typical hadronic interaction...

to ultraperipheral collisions

- Experimental signature: few signal tracks in an otherwise empty detector
- Wide acceptance coverage is important to ensure event emptiness
- Zero degree calorimeters (ZDC) serve to veto hadronic interactions

$\gamma\gamma \rightarrow$ dileptons

Good agreement between LHC data and LO QED predictions (STARLIGHT)

Light-by-light scattering

Events/3 GeV

- Forbidden in classical electrodynamics
- Tested indirectly in g-2 measurements, Delbruck scattering and photon splitting processes at low-energies
- Possible channel to study anomalous gauge couplings and contributions from BSM particles, see PRL 111 (2013) 080405

ATLAS: evidence for light-by-light scattering in UPCs in agreement with SM predictions (4.4σ significance)

6

Vector meson photoproduction in UPC

Exclusive vector meson production cross section in UPC can be factorized in two parts:

- QED: photon flux: dN/dω
- QCD: vector meson photoproduction: $\sigma(W_{vp})$

J/ψ photoproduction in UPC

 LO pQCD: exclusive J/ψ photoproduction cross section is proportional to the square of the gluon density in the target:

$$\frac{d\sigma_{\gamma A \to J/\psi A}}{dt}\Big|_{t=0} = \frac{M_{J/\psi}^3 \Gamma_{ee} \pi^3 \alpha_s^2(Q^2)}{48\alpha_{\rm em} Q^8} \Big[xg_A(x,Q^2)\Big]^2$$

- J/ ψ mass serves as a hard scale: $Q^2 \sim \frac{M_{J/\psi}^2}{4} \sim 2.5 \ {\rm GeV}^2$
- Bjorken $x \sim 10^{-2} 10^{-5}$ accessible at LHC:

$$x = \frac{M_{J/\psi}^2}{W_{\gamma p}^2} = \frac{M_{J/\psi}}{2E_p} \exp(\pm y)$$

Vector meson photoproduction in UPC allows one to probe poorly known gluon distributions at low x

J/ψ photoproduction of proton

Can we use this data to constrain gluon PDFs?

Caveats:

- J/ψ photoproduction probes generalized gluon distributions (two gluons have different x values):
 - Connected with collinear PDFs via Shuvaev transform: PRD 60 ((1999) 014015
- Scale uncertainty ($\mu^2 \sim 2.4-3 \text{ GeV}^2$ is a reasonable choice)
- Large NLO contributions

 $x_{2}=x-\xi$

 $x_{i}=x+\xi$

 x_i

Run 2: p-Pb @ 8.16 TeV

- x10 more stat at high $W_{\gamma p} \sim 0.7-1.4$ TeV
- search for gluon saturation effects in p at low x~10⁻⁵
- study proton-dissociative cross section behaviour at high W $_{\rm \gamma p}$

J/ψ photoproduction on Pb target

Coherent J/ ψ photoproduction cross section is proportional to the square of the gluon density in the target

$$\frac{d\sigma_{\gamma A \to J/\psi A}}{dt}\Big|_{t=0} = \frac{M_{J/\psi}^3 \Gamma_{ee} \pi^3 \alpha_s^2(Q^2)}{48\alpha_{\rm em} Q^8} \Big[xg_A(x,Q^2)\Big]^2$$

J/ψ photoproduction in Pb-Pb UPC (lead target) provides information on **gluon shadowing in nuclei at low x**

$$R_g^A(x,Q^2) = \frac{g_A(x,Q^2)}{Ag_p(x,Q^2)}$$
 – gluon

Nuclear shadowing = suppression of cross section on a nucleus compared to sum of cross sections on individual nucleons. Explained by destructive interference among amplitudes for interaction with 1, 2 and more nucleons

shadowing factor

Parton distributions in nuclei (nPDFs)

nPDFs are fundamental QCD quantities for the description of DIS, pA, AA collisions

- determine initial state in heavy ion collisions
- required for quantitative estimates for the onset of saturation

Determination of nPDFs: 1.6 10^{5} $10 \,\mathrm{GeV}^2)$ $10 \,\mathrm{GeV}^2$) 1.41.2 1.2 $Q^2 \, [{\rm GeV}^2]$ 1.01.00.80.8 10^{4} $R^{\rm Pb}_{\overline{u}}(x,Q^2$ 0.6 0.6 $R_{dV}^{\rm Pb}(x,t)$ 0.4 PPS16 EPPS16 0.2TEO15fixed target DIS and DY 10^{3} LHC dijets 10^{-3} 10^{-2} 10^{-3} 10^{-2} 10^{-1} 10^{-1} 10 10^{-1} LHC W & Z CHORUS neutrino data 10^{2} PHENIX π^0 $10 \,\mathrm{GeV}^2$) 1.4 $= 10 \,\mathrm{GeV}^2$ 1.2 1.2 1.01.0 0.80.810 \tilde{Q}_{3} $R_{\overline{s}}^{Pb}(x, Q^2)$ 0.6 $R^{\rm Pb}_{\alpha}(x,$ 0.40.4 EPPS16 EPPS16 0.2 0.20.0 10^{-2} 10^{-4} 10^{-3} 10^{-1} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{-3} 10^{-2} 10^{-1} 10^{-4} xxr

Resulting nPDFs have rather large uncertainties, especially for small-x gluons due to:

- Limited kinematics
- Indirect extraction of gluons via Q² evolution

EPPS16 : EPJ C (2017) 77

Coherent and incoherent photoproduction

Two types of photoproduction processes:

- **Coherent:**
 - photon couples coherently to all nucleons
 - $-\langle p_{\rm T}\rangle \sim 1/R_{\rm Pb} \sim 60 \,{\rm MeV/c}$
- **Incoherent**:
 - photon couples to a single nucleon

 - $\langle p_T \rangle \sim 1/R_p \sim 450 \text{ MeV/c}$ usually accompanied by neutron emission
- Other contributions: J/ψ from coherent and incoherent ψ' decays and $\gamma\gamma \rightarrow II$

Results from Run 1

Several competing approaches:

- Empirical shadowing parameterizations: AB, PRC85 (2012) 044904
- Shadowing in leading twist approximation (LTA): RSZ, PLB 710 (2012) 252
- Color dipole model + saturation: GM: PRC84 (2011) 011902, CSS: PRC86 (2012) 014905, LM: PRC87 (2013) 032201

Good agreement with EPS09 and LTA shadowing

Gluon shadowing from photoproduction data

Nuclear suppression factor:

$$S(W_{\gamma p}) \equiv \left[\frac{\sigma_{\gamma Pb \to J/\psi Pb}^{\exp}(W_{\gamma p})}{\sigma_{\gamma Pb \to J/\psi Pb}^{IA}(W_{\gamma p})}\right]^{1/2}$$

Experimental cross section in Pb-Pb UPC divided by the photon flux

Impulse approximation:

forward photoproduction cross section on proton (HERA) times integral over squared Pb form-factor

- Nuclear suppression factor S gives direct access to R_g(x,µ~2.4 GeV)
- First direct evidence of large gluon nuclear shadowing: R_q(x,µ~2.4 GeV) ~ 0.6
- Many complications (skewness, NLO, scale uncertainty and higher-twist corrections) are likely minimized – S factor can be used in global nPDF fits

First run 2 results

- 90-95% contribution of high-*x*: 0.7-3 x 10⁻²
- Back-of-the-envelop calculation (neglect low-x):

ALICE/Impulse approximation ~ 0.6 => shadowing factor ~ $\sqrt{0.6}$ ~ 0.8

Next...

one-side fraction 8.00

0.6

0.4

Pb +

 $Pb \rightarrow Pb + Pb + J/\psi$

 $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

- Total

— ONON — ONXN

-XNXN

0N1N

 Study J/ψ photoproduction accompanied by neutron emission (measured with Zero Degree Calorimeters) => access x~10⁻⁵

J/ψ production in peripheral Pb-Pb

- Data shows an excess of J/ψ at low $p_T < 100 \text{ MeV/c} (R_{AA} \sim 7)$
- Possible interpretation: coherent photoproduction on nuclear fragments

Photonuclear dijet production

Summary and outlook

- LHC is an effective $\gamma\gamma$, γp and γPb collider
- Continuum $\gamma\gamma \rightarrow$ I+I- cross sections consistent with LO predictions — Validate photon fluxes obtained with EPA
- Evidence for SM $\gamma\gamma \rightarrow \gamma\gamma$ production (significance of 4.4 σ)
- Photoproduction of vector mesons in UPC at LHC allows one to study gluon distributions at unprecedently high energies
- Coherent J/ ψ photoproduction cross sections in UPC shows direct evidence of large gluon shadowing R(x=0.001) ~ 0.6
- Expect lots of new data on photoproduction of vector mesons and dijets in UPC