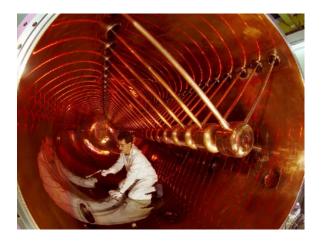
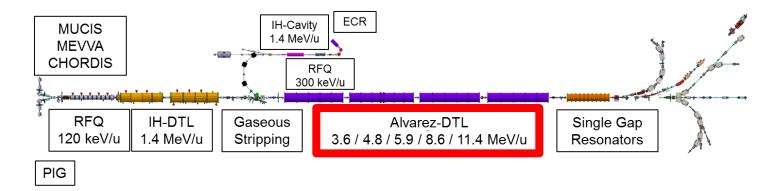
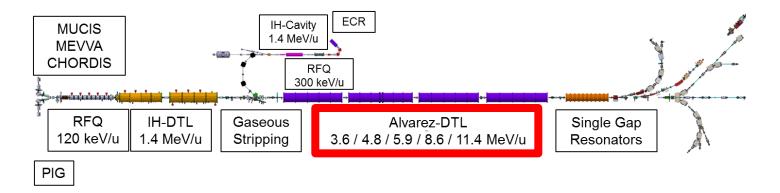

Anna Rubin, 14.06.17

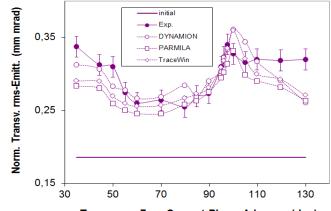
THANKS TO MY COLLEAGUES

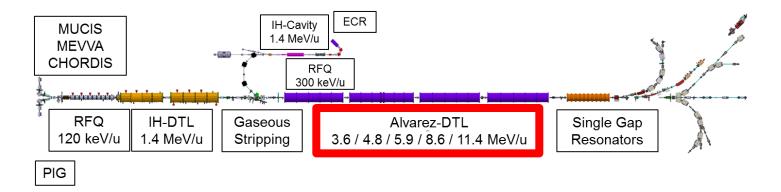

Lars Groening Sascha Mickat Xiaonan Du Michael Kaiser Peter Gerhard David Daehn Udo Weinrich Sabrina Appel Oksana Geithner


- Introduction
- Beam dynamics simulations
- Error study
- Beam brilliance study at SIS 18 input

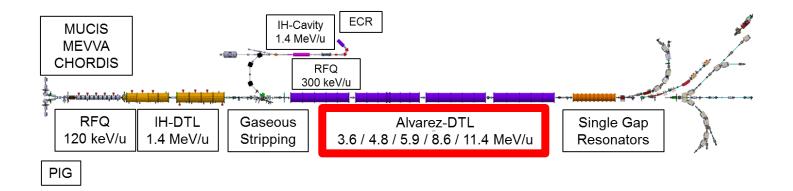

Acceleration of all ion species from protons to U²⁸⁺ Frequency 108 MHz

Alvarez DTL is more than 40 years in operation


• It has suffered from material fatigue (sparking, beam induced defects, water leaks, iron oxide deposits, bubbles and scars on the inner-tank surface)


Alvarez DTL is more than 40 years in operation

- It has suffered from material fatigue (sparking, beam induced defects, water leaks, iron oxide deposits, bubbles and scars on the inner-tank surface)
- Higher phase advance through stronger quadrupole gradients is needed to minimize the emittance growth due to the space charge (zero current phase advance 60° or higher instead of current limit for U²⁸⁺ of 55°)


space charge equivalent to ²³⁸U²⁸⁺ 15 emA

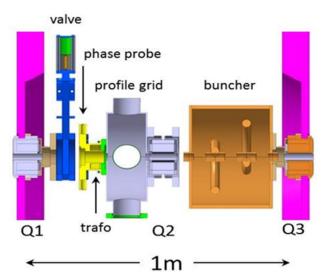
Transverse Zero Current Phase Advance (deg)

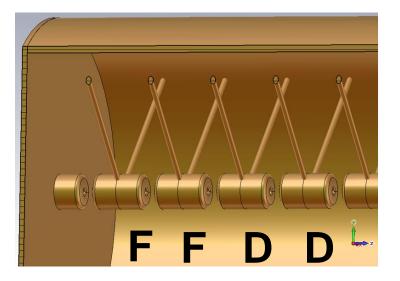
Alvarez DTL is more than 40 years in operation

- It has suffered from material fatigue (sparking, beam induced defects, water leaks, iron oxide deposits, bubbles and scars on the inner-tank surface)
- Higher phase advance through stronger quadrupole gradients is needed to minimize the emittance growth due to the space charge (zero current phase advance 60° or higher instead of current limit for U²⁸⁺ of 55°)
- Non-pulsed operation limits todays flexibility and efficiency for providing adequate beam to an increased number of users (multi-ion operation)

Refurbished vs new Alvarez

- A refurbished Alvarez would be strongly limited in beam dynamics with respect to FAIR, new DTL is designed to meet FAIR requirements
- Economically the refurbishment can not compete with a new DTL


New Alvarez DTL layout


5 rf-cavities for acceleration, 184 cells

4 intertank sections

189 pulsed quadrupoles

4 intertank re-bunchers

FFDD – quadrupoles focusing zero current phase advance: 65° max pole tip field $\leq 0.8 \text{ T}$ RF design phases: -30° , -30° , -30° , -25° , -25°

INTERTANK

INTERTANK

buncher

phase probe

profile grid

New Alvarez DTL layout

5 rf-cavities for acceleration, 184 cells

4 intertank sections

189 pulsed quadrupoles

4 intertank re-bunchers

22.06.2017: Dr. Manuel Heilmann "Prototype Cavity of the new FAIR post-Stripper Linac"

valve

zero current phase advance: 65 °

max pole tip field ≤ 0.8 T

RF design phases: -30°, -30°, -30°, -25°, -25°

TRACEWIN

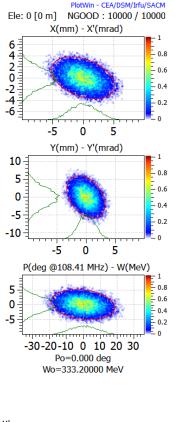
D. Uriot, N. Pichoff

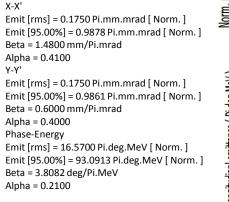
CEA Saclay DSM/Irfu/SACM/LEDA CEN Saclay 91191 Gif sur Yvette cedex

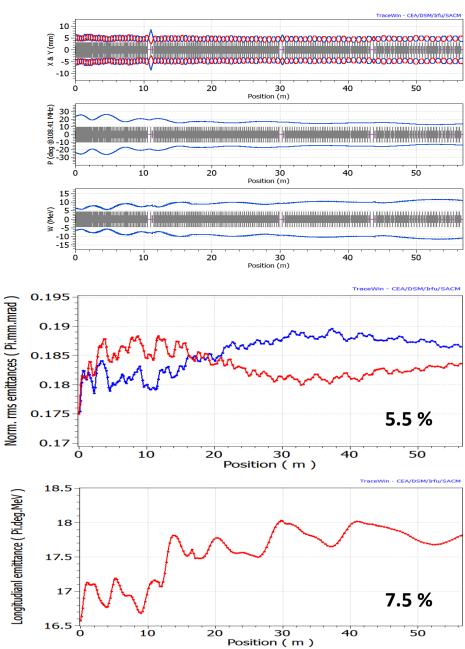
D. Daehn

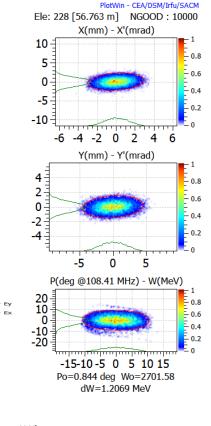
Studied models (A1):

- "hard edge" model for E-field and B-field with identical quadrupoles in each drift tube (effective length of 96mm)
- 3D field maps for E-field, analytical field model for B-field with identical quadrupoles
- 3D field maps for E-field and B-field with identical quadrupoles
- "hard edge" model for E-field and B-field with three groups of quadrupoles (effective lengths of 96 mm, 122 mm and 140 mm)
- 3D field maps for E-field, analytical field model for B-field with three groups of quadrupoles as above


DELIVER ALMOST IDENTICAL RESULTS!


Studied models (A1):


- "hard edge" model for E-field and B-field with identical quadrupoles in each drift tube (effective length of 96mm)
- 3D field maps for E-field, analytical field model for B-field with identical quadrupoles
- 3D field maps for E-field and B-field with identical quadrupoles
- "hard edge" model for E-field and B-field with three groups of quadrupoles (effective lengths of 96 mm, 122 mm and 140 mm)
- 3D field maps for E-field, analytical field model for B-field with three groups of quadrupoles as above


DELIVER ALMOST IDENTICAL RESULTS!

NOMINAL FAIR CASE

Ex

X-X' Emit [rms] = 0.1838 Pi.mm.mrad [Norm.] Emit [95.00%] = 1.0690 Pi.mm.mrad [Norm.] Beta = 1.2879 mm/Pi.mrad Alpha = -0.1881 Y-Y' Emit [rms] = 0.1865 Pi.mm.mrad [Norm.] Emit [95.00%] = 1.0702 Pi.mm.mrad [Norm.] Beta = 2.9929 mm/Pi.mrad Alpha = -0.1522 Phase-Energy Emit [rms] = 17.8232 Pi.deg.MeV [Norm.] Emit [95.00%] = 99.0856 Pi.deg.MeV [Norm.] Beta = 1.1308 deg/Pi.MeV Alpha = 0.0265

INPUT

	1 FAIR	2 Zero Current	3 Low Energy	4 Larger Long. Emit.	5 Smaller Long. Emit.	6 Transv. Flat Input
I, mA	16.5	0	0	16.5	16.5	16.5
E _x (rms), mm mrad	0.175	0.175	0.175	0.175	0.175	0.0875
E _y (rms), mm mrad	0.175	0.175	0.175	0.175	0.175	0.35
E _z (rms), MeV/u deg	0.07	0.07	0.07	0.14	0.035	0.07
Energy (out), MeV/u	11.4	11.4	3.3	11.4	11.4	11.4

INPUT

	1 FAIR	2 Zero Current	3 Low Energy	4 Larger Long. Emit.	5 Smaller Long. Emit.	6 Transv. Flat Input
I, mA	16.5	0	0	16.5	16.5	16.5
E _x (rms), mm mrad	0.175	0.175	0.175	0.175	0.175	0.0875
E _y (rms), mm mrad	0.175	0.175	0.175	0.175	0.175	0.35
E _z (rms), MeV/u deg	0.07	0.07	0.07	0.14	0.035	0.07
Energy (out), MeV/u	11.4	11.4	3.3	11.4	11.4	11.4

OUTPUT

	1 FAIR	2 Zero Current	3 Low Energy	4 Larger Long. Emit.	5 Smaller Long. Emit.	6 Transvers. Flat Input
Transmission	100%	100%	100%	100%	100%	100%
ΔEx, total for 95%	7%	0%	0%	7%	8%	16%
ΔEy, total for 95%	7%	0%	0%	10%	7%	3%
ΔEz, total for 95%	10%	0.7%	1.7%	5%	11%	4%
Bunch Length, 95%	±16 deg	±11 deg	±33 deg	±21 deg	±14 deg	±17 deg

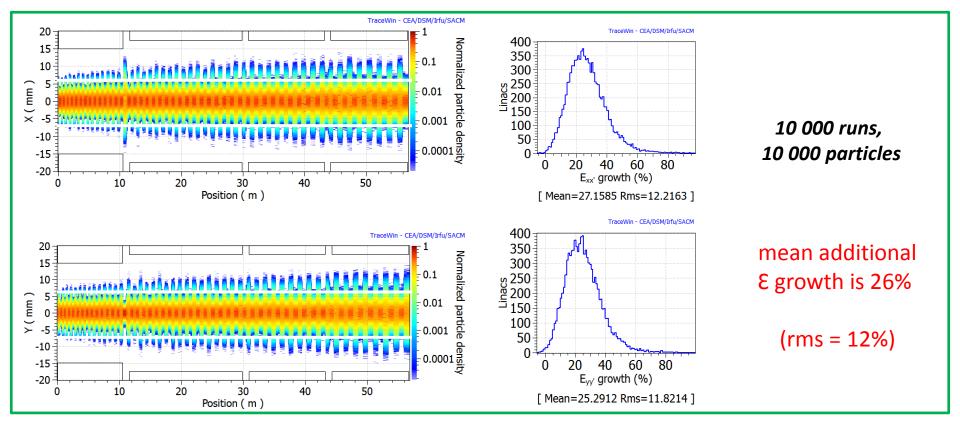
ERROR STUDY FOR THE NEW ALVAREZ (TraceWin, FAIR nominal case):

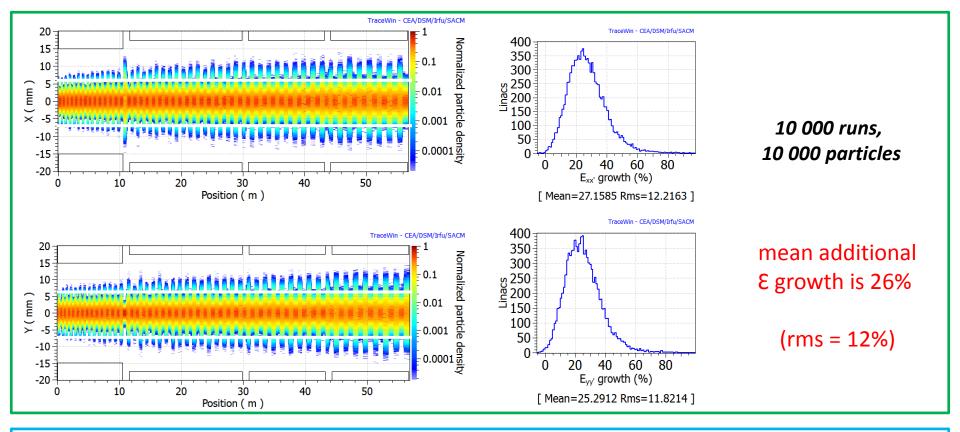
machine errors

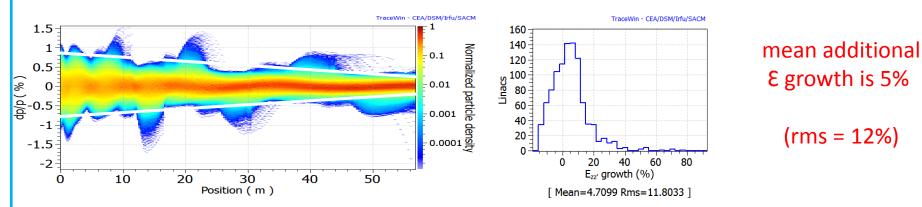
+

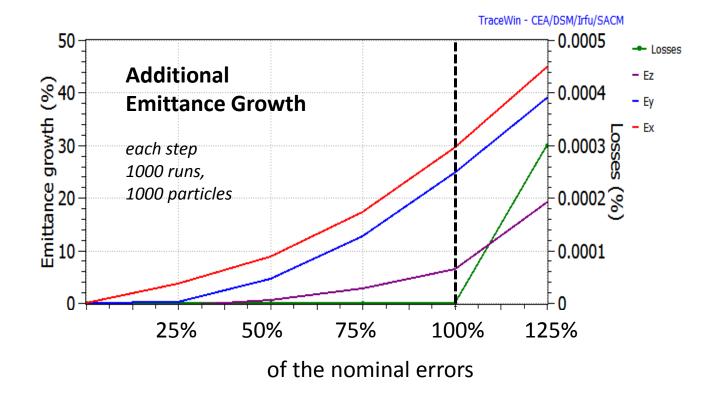
beam errors

ERROR STUDY FOR THE NEW ALVAREZ (TraceWin, FAIR nominal case):

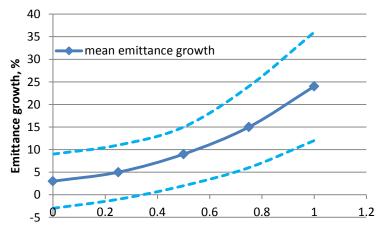

machine errors


+


beam errors

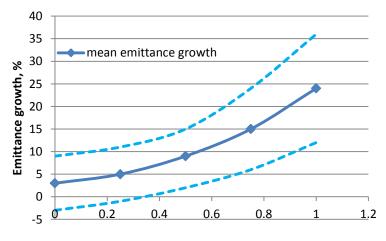

Quadrupole displacement x,y: \pm 0.15 mm each Quadrupole rotation around each of the three axis: \pm 1° Gap voltage : \pm 1% Gap phase: \pm 1° Initial energy: ± 0.5% All three initial emittances: ± 15% Mismatches: ± 10% Current: ± 15%

all errors are independently and uniformly distributed on the interval [-max, +max]

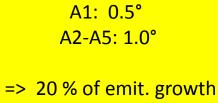


Transversally

quadrupole rotation around Z axis


quadrupole rotation around Z axis, deg

100 runs, 10 000 particles

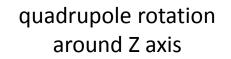


Transversally

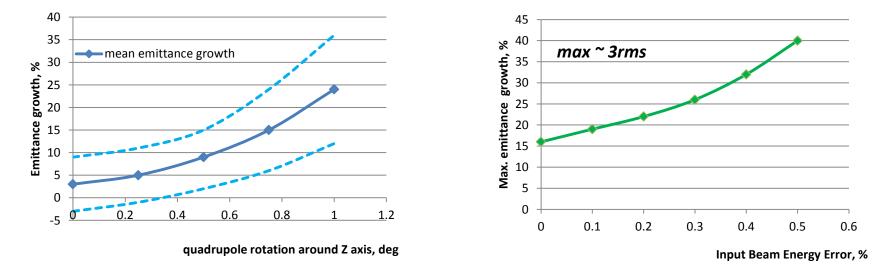
quadrupole rotation around Z axis

quadrupole rotation around Z axis, deg

A1-A5: 0.5°

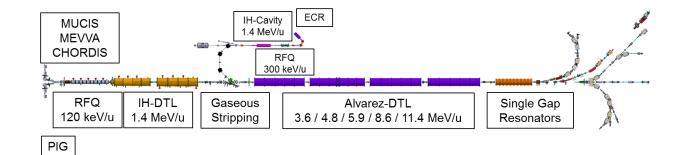

=> 10 % of emit. growth

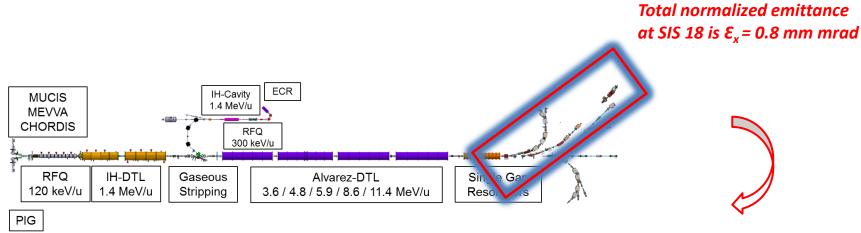
100 runs, 10 000 particles



Transversally

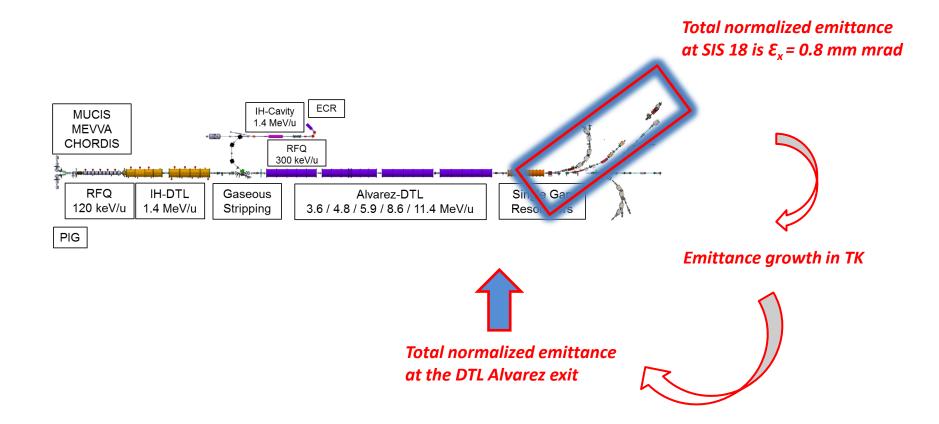
Longitudinally


energy error of the input beam

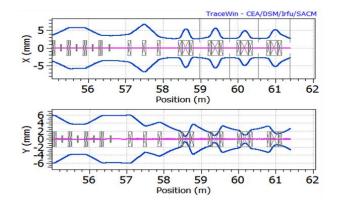

100 runs, 10 000 particles

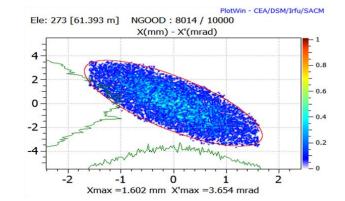
SIS18 Acceptance / Beam Brilliance Study

Total normalized emittance at SIS 18 is $\mathcal{E}_x = 0.8$ mm mrad

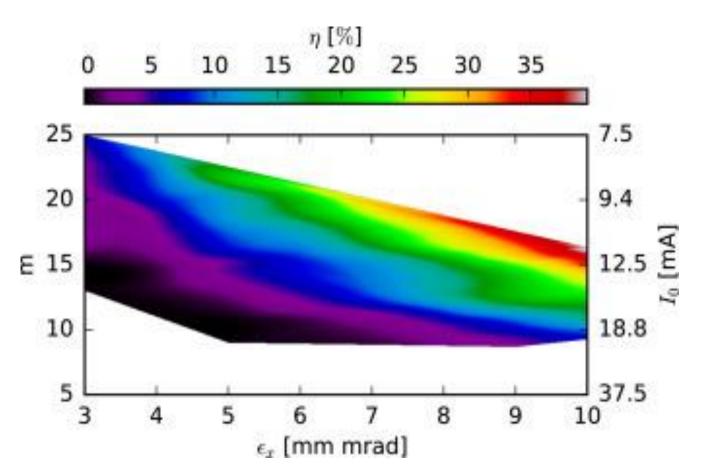


SIS18 Acceptance / Beam Brilliance Study

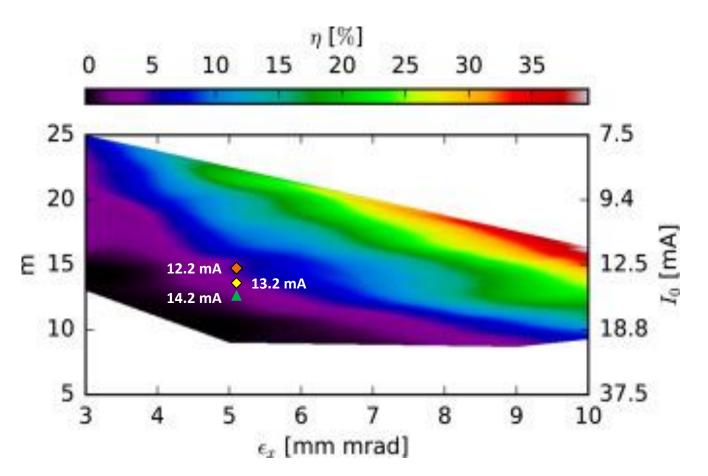

Emittance growth in TK


SIS18 Acceptance / Beam Brilliance Study

Virtual Collimators Line

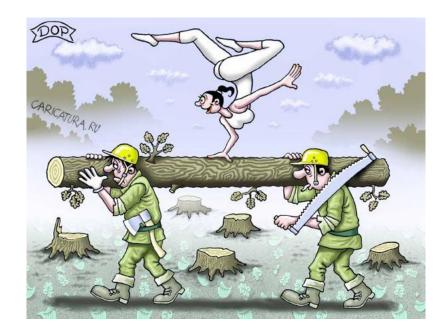


Emittance growth from DTL to SIS18	SIS18 Input Without errors	SIS18 Input With errors in DTL (aver.)
30%	13.2 mA	12.2 mA
10%	14.2 mA	13.2 mA


Emittance growth from DTL to SIS18	SIS18 Input Without errors	SIS18 Input With errors in DTL (aver.)
30%	13.2 mA	12.2 mA
10%	14.2 mA	13.2 mA

<u>S. Appel</u> - The 3D Pareto front for a simultaneous optimization of multiplication factor, loss and emittance

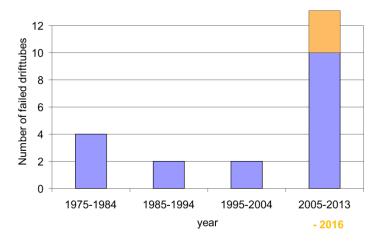
Emittance growth from DTL to SIS18	SIS18 Input Without errors	SIS18 Input With errors in DTL (aver.)
30%	13.2 mA	12.2 mA
10%	14.2 mA	13.2 mA


<u>S. Appel</u> - The 3D Pareto front for a simultaneous optimization of multiplication factor, loss and emittance

CONCLUSION:

- The new Alvarez DTL is robust machine with a small emittance growth
- Error study shows the mean rms emittance growth of ~ 30%, taking into account nominal emittance growth and large machine and beam errors
- The quadrupole rotation around Z axis (especially in A1) is a critical point for the transverse emittance growth, input energy error for longitudinal
- Small emittance growth in TK will provide the beam brilliance, which satisfies the FAIR requirements

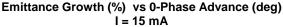
Thank you for your attention!

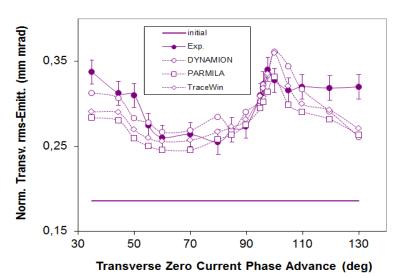


- HV sparking
- beam induced defects
- ground fault
- water leaks
- deposits (iron oxide)

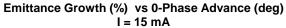
 inner-tank surface (bubbles, scars)

S. Mickat, oct. 2016

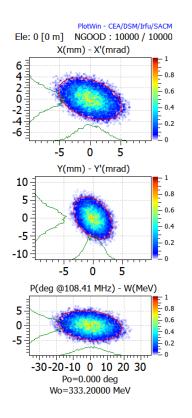


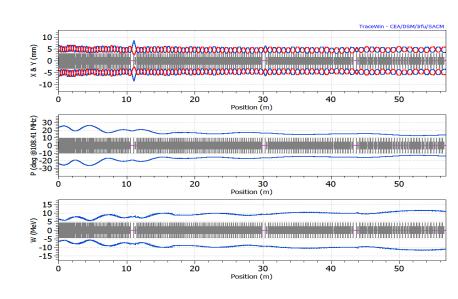

1.st TANK

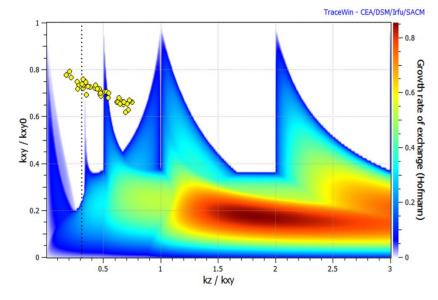
Transverse emittance growth for different initial phase advance

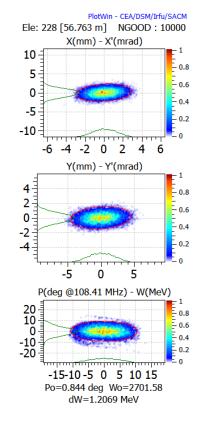

matched solution, box model

 $E_{x,y}$ (rms, norm) = 0.175 mm mrad, E_z = 70 deg keV/u






NOMINAL FAIR CASE



X-X'

Emit [rms] = 0.1750 Pi.mm.mrad [Norm.] Emit [95.00%] = 0.9878 Pi.mm.mrad [Norm.] Beta = 1.4800 mm/Pi.mrad Alpha = 0.4100 Y-Y' Emit [rms] = 0.1750 Pi.mm.mrad [Norm.] Emit [95.00%] = 0.9861 Pi.mm.mrad [Norm.] Beta = 0.6000 mm/Pi.mrad Alpha = 0.4000 Phase-Energy Emit [rms] = 16.5700 Pi.deg.MeV [Norm.] Emit [95.00%] = 93.0913 Pi.deg.MeV [Norm.] Beta = 3.8082 deg/Pi.MeV Alpha = 0.2100

X-X'

Emit [rms] = 0.1838 Pi.mm.mrad [Norm.] Emit [95.00%] = 1.0690 Pi.mm.mrad [Norm.] Beta = 1.2879 mm/Pi.mrad Alpha = -0.1881 Y-Y' Emit [rms] = 0.1865 Pi.mm.mrad [Norm.] Emit [95.00%] = 1.0702 Pi.mm.mrad [Norm.] Beta = 2.9929 mm/Pi.mrad Alpha = -0.1522 Phase-Energy Emit [rms] = 17.8232 Pi.deg.MeV [Norm.] Emit [95.00%] = 99.0856 Pi.deg.MeV [Norm.] Beta = 1.1308 deg/Pi.MeV Alpha = 0.0265

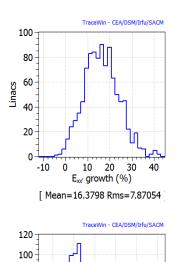
30% total emittance growth behind DTL

DTL Input rms emittance	SIS18 Input Without errors	SIS18 Input With errors in DTL (aver.)
0.175 mm mrad	13.2 mA	12.2 mA
0.150 mm mrad	14.0 mA	12.9 mA (*)
0.125 mm mrad	14.6 mA	13.4 mA (*)

10% total emittance growth behind DTL

DTL Input rms emittance	SIS18 Input Without errors	SIS18 Input With errors in DTL (aver.)
0.175 mm mrad	14.2 mA	13.2 mA
0.150 mm mrad	14.6 mA	13.6 mA (*)
0.125 mm mrad	15.3 mA	14.5 mA (*)

FOR TOTAL EMITTANCE 0.8 MM MRAD AT SIS INPUT


preliminary, from Sabrina's data MTI losses 5% and less - more than 13.0 mA MTI losses 4% and less - more than 13.5 mA MTI losses 3% and less - more than 14.3 mA MTI losses 2% and less - more than 15.0 mA

10

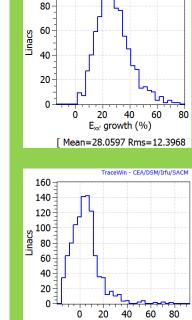
Ezz' growth (%)

[Mean=1.89622 Rms=7.55969

20 30

40

80


40

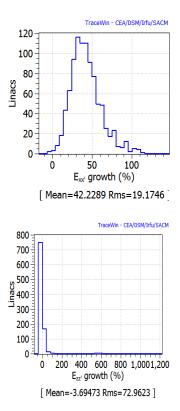
20

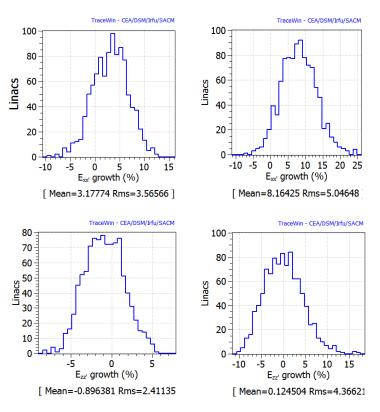
0

-10 0

Cinacs 09

E_{zz'} growth (%)


[Mean=4.7099 Rms=11.8033]


100 %

100

TraceWin - CEA/DSM/Irfu/SACM

125%

