Optimization of cavity-amplifier interaction in Iow-MHz cavity systems

Challenges:

- Multi-parameter optimization
 problem
- strong constraints (e.g. only few amplifiers available for specific application)
- usually broad frequency range

Technical objectives:

Increase of voltage transfer from the amplifier to the cavity gap

- \rightarrow higher gap voltage
- \rightarrow lower costs
- \rightarrow higher efficiency

Research objectives:

- General design guidelines
- Prototype verification

 \rightarrow nonlinear

Optimization of cavity-amplifier interaction in low-MHz cavity systems

- Series combination: less voltage drop at inner impedance
- Parallel: factor 4 for voltage on secondary side (beam), but high voltage drop on primary side

Beam-Loading in Pulsed, Broadband and Deactivated RF Systems

- Beam-loading during **barrier-bucket** operation in SIS100:
 - planned cavities: two MA cavities with 500...1000 Ω / 15 kV each
 - typical beam current: 1 A
 - \Rightarrow induced: 0.5 1 kV (3 7%)
 - \rightarrow feed-forward compensation necessary to keep emittance low?
- Short, high current pulses during bunch rotation in SIS100: evaluation of deactivation / impedance reduction w.r.t. beam loading including all cavities
- Longitudinal feedback based on CW signal generation → currently not designed for pulsed operation

TECHNISCHE UNIVERSITÄT DARMSTADT

Challenge

Merging

- ...beam dynamics simulations during RF gymnastics, especially
 - barrier bucket pre-compression
 - bunch rotation (compression)
- ...with models of all FAIR RF systems
 - acceleration
 - barrier bucket
 - Iongitudinal feedback
 - bunch compression
- ...and solutions for deactivation
 - detuning
 - gap switches
 - ring core saturation

Research objectives:

Definition of technical measures to improve beam quality

Beam-Loading in Pulsed, Broadband and Deactivated RF Systems

State of Research

Fault-tolerant distributed digital electronics for particle accelerators

Fault-tolerant distributed digital electronics for particle accelerators

/ defects / crashes (e.g. unexpected modes of eration) nmunication errors (e.g. EMC)
rator errors
ple measures:
nponent quality It-tolerance Communication protocols Redundancy → requires fault diagnosis (e.g. watchdogs) Further system design aspects • e.g. deterministic behavior - not guaranteed by some modern SW techniques) • e.g. memory refresh, discarding

