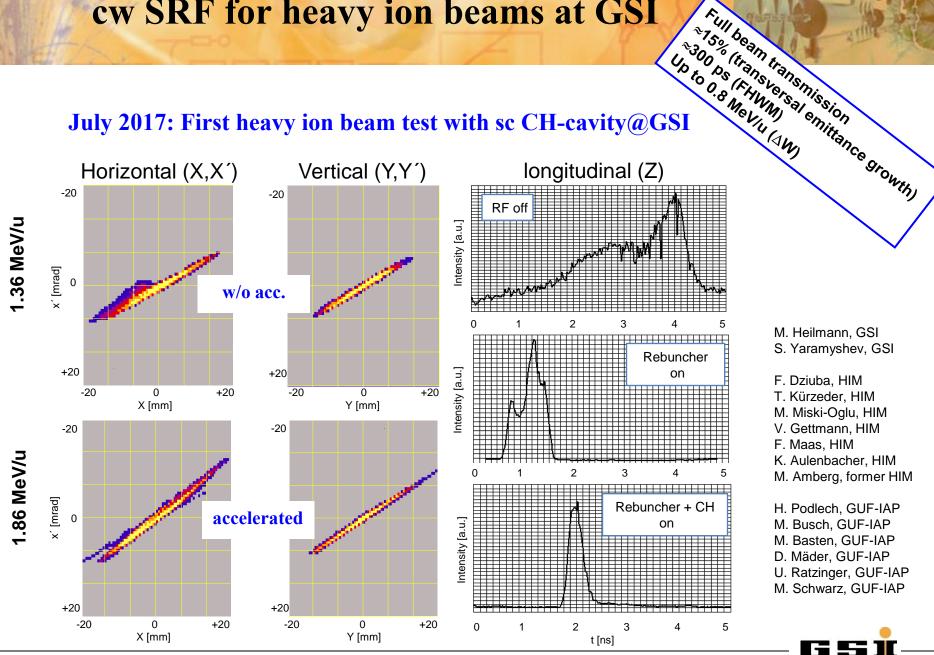

Pushing SRF technology for heavy ion research to the limit: RF-Test@horizontal cryostat/GSI (2016)

Multigap SRF "CH" structures designed by Goethe University, Frankfurt and realized together with GSI and HIM/Mainz:

•It seems that the potential of the "CH" to facilitate for heavy ion research is not only existing, but it is larger than anticipated !


→ Research should be done to create a sound basis for future accelerator projects and/or upgrades

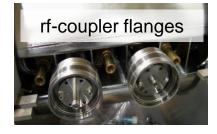
Pushing SRF technology for heavy ion research to the limit: RF-Test@horizontal cryostat/GSI (2016)

cw SRF for heavy ion beams at GSI

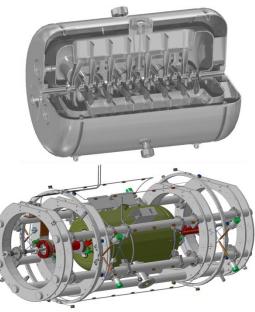
Full beam transmission 2300 ps (FHWMM) July 2017: First heavy ion beam test with sc CH-cavity@GSI

- M. Heilmann, GSI S. Yaramyshev, GSI
- F. Dziuba, HIM
- T. Kürzeder, HIM
- M. Miski-Oglu, HIM
- V. Gettmann, HIM
- F. Maas, HIM
- K. Aulenbacher, HIM

M. Amberg, former HIM


- H. Podlech, GUF-IAP
- M. Busch, GUF-IAP
- M. Basten, GUF-IAP
- D. Mäder, GUF-IAP
- U. Ratzinger, GUF-IAP
- M. Schwarz, GUF-IAP

RF-Cavity Development

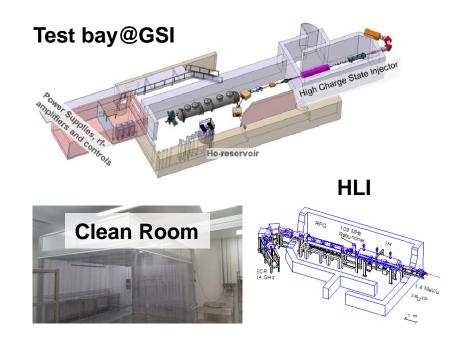


Demonstrator Project

Cryostat with CH-cavity, high field solenoids, cold warm transitions and support system (Cryogenic)

Short Cavity for Cryomodule1

Parameters/Short Cavities (CM1)


β		0.069
Frequency	MHz	216.816
Cell number	#	8
Length ($\beta\lambda$ -definition)	mm	381.6
Cavity diameter (outer)	mm	400
Cell length	mm	47.7
Aperture diameter	mm	30
Static tuner	#	3
Dynamic bellow tuner	#	2
Wall thickness	mm	3-4
Accelerating gradient	MV/m	5
E_p/E_a		5.2
$\mathbf{B}_{\mathbf{p}}^{\mathbf{F}}/\mathbf{E}_{\mathbf{a}}^{\mathbf{T}}$	mT/(MV/m)	<10
G	Ω	50
R_a/Q_0		1070

SRF-Infrastructure

- High Pressure Rinsing (HPR)
- RF testing (warm & cold cavities)
- Cleanroom environment
- Bake out oven (max. 180°C)

- Clean room upgrade@GSI (class ISO 5 (required: ISO 6), at FFU unit: class ISO 2 (required: ISO4))
- High Charge State Injector Linac
- Area for beam test

Conclusion/Objectives

We plan research in order to exploit the present competitive edge achieved by the succesful development of multi-gap SRF ion accelerator structures

- Complementary infrastucture (GSI-beam installations, JGU cleanroom and rf test-infrastructure) long standing expertise (GUF)
- Characterization and optimization of different cavities, beam dynamics, cleaning techniques, gradient optimization
- Objective → Clarify potential of multigap SRF for all kinds of projects,

(Gradient saves space and cost but needs to be technically sound and suitable beam dynamics must exist!)

