Multi-modal energy management for GSI /FAIR

FG Energy Information Networks & Systems Prof. Dr. Florian Steinke, Christopher Ripp

Integrating energy hungry accelerators into the Energiewende is possible!

Starting Point

Higher beam energy and intensity raise the energy demand for each new facility, e.g. FAIR extension of GSI will increase energy demand from \sim 60 GWh¹⁾ by a factor of 6-8

- Option 1: Reduce energy demand, e.g. energy recovering linacs
- Option 2: Use energy when available (while keeping accelerator operation constant)
 - This is an instance of industrial demand side management which has a decisive role in the Energiewende

Objectives and interests

- An accelerator facility is a complex system!
- Development of a <u>multimodal</u> energy system concept for GSI/FAIR
 - Electricity to cold via cryogenic cooling
 - Electricity to heat (cavities, data center, etc.)
- **Optimization variables:**
 - (Thermal) storages
 - Operation adjustments without impact on experiments
 - Energy purchasing and CO₂ accounting processes (CO₂ intensity is not flat over time)
- Possibly reducing carbon footprint and operating costs of GSI/FAIR or other future accelerators

GSİ FAIR.

Accelerators as a forerunner of industrial DSM (Demand Side Management)

Employ Industry 4.0 for energy system optimization and beyond

- Accelerators are large, (hopefully) modern factories
- They will produce massive operational data about components (aside from the experimental data!)

Components

- Beam sources
- Cavities
- Coils

- Cryogenic cooling
- Space heating
- Data center
- Learning statistical models is the key to monitoring / planning / optimization
 - Our playing field: energy system optimization
 - What is the lifetime impact of up-/downregulating cryogenic cooling? Is it worth manipulating?
 - What is a typical energy foot print of cavities?
 - Second use: availability optimization
 - Why are coils suddenly use twice the energy as before?
 Is this an indicator of near end of life?

Data

- Operation hours and modes
- Energy consumptions and output
- (Partial) outages

