# Investigations of Detector Signatures from $\Lambda\bar{\Lambda}$ and $\Xi^-\Xi^+$ Events

## Jenny Regina

Uppsala University

Department of Physics and Astronomy

PANDA Collaboration Meeting 08/06-2017 GSI, Darmstadt





### Outline

- Motivation
  - Dynamical Track and Event Reconstruction
  - SttCellTrackFinder
- ΛΛ̄ events
  - STT signatures
  - MVD and SciTil signals
- $\Xi\bar{\Xi}$  events
  - STT signatures
  - MVD and SciTil signals
- Outlook and Summary

#### Motivation

 Hyperons might be difficult to reconstruct due to their decay topology with e.g. displaced vertices

| Hyperon | c	au[cm] |  |
|---------|----------|--|
| Λ       | 8.0      |  |
| Ξ-      | 4.9      |  |
|         |          |  |

- DyTER-Dynamical Track and Event Reconstruction
- STTCellTrackFinder
  - Cellular Automaton to form tracklets from STT hits
  - Riemann fit to combine tracklets

Goal: Dynamic track finder which is as general as possible but works for hyperon tracking

### Motivation

#### Focus:

- $\Lambda\bar{\Lambda}$  and  $\Xi^-\Xi^+$  events due to their complex decay topology
- MVD and STT for tracking
- ullet MVD and SciTil for possibility of providing a  $t_0$

# $p\bar{p} \to \Lambda\bar{\Lambda} \to p\pi^-\bar{p}\pi^+$



### $p\bar{p} \to \Lambda\bar{\Lambda} \to p\pi^-\bar{p}\pi^+$

- 10,000 events
- Beam momenta: 1.642 GeV, 7 GeV and 15 GeV
- ullet Forward peaking distribution,  $\bar{\Lambda}$  forward boosted
- EvtGen, entire decay chain specified
- In analysis: only consider particles actually part of the interesting reaction
- Ideal track finder, standard track functor
- Target spectrometer
  - Before bug fix
  - Standard track functor (≥ 4 hits in MVD or ≥ 6 hits in MVD+STT+GEM)
  - Bug: if this track functor was used, all tracks which do not hit forward spectrometer were classified as reconstructible
  - Bug fixed in trunk

$$p\bar{p} \to \Lambda\bar{\Lambda} \to p\pi^-\bar{p}\pi^+$$

- For events, only hits from final state particles
- Only tracks with  $\geq$  4 STT hits from final state particles (from now, only tracks with  $\geq$  4 STT hits will be considered)

|                                    | 1.642 GeV | 7 GeV   | 15 GeV  |
|------------------------------------|-----------|---------|---------|
| Number of events                   | 10,000    | 10,000  | 10,000  |
| Events with a MVD hit              | 99.94 %   | 99.47 % | 99.14 % |
| Events with a SciTil hit           | 34.64 %   | 3.00 %  | 1.36 %  |
| Number of tracks                   | 26,013    | 7,253   | 6,614   |
| Tracks with a MVD hit              | 95.5 %    | 98.3 %  | 98.0 %  |
| Tracks with a SciTil hit           | 38.7 %    | 5.8 %   | 2.9 %   |
| Tracks with a MVD and a SciTil hit | 36.9 %    | 5.6 %   | 2.7 %   |
| Tracks with a MVD or a SciTil hit  | 97.3 %    | 98.5 %  | 98.2 %  |

- MVD itself useful for most events and tracks
- At higher beam momenta, most tracks do not reach SciTil
- MVD and SciTil together are useful at all beam momenta

### STT

#### At PANDA: 20 MHz interaction rate

⇒ On average one event every 50 ns

#### STT

- 4,636 straws
- 27 layers
- When straw tube is hit, gas is ionized and free electrons created
- Electrons travel towards wire at center of tube - signal for readout
- Maximum drift time of electrons: 200 ns
- During drift time no more signals can be registered
  - ⇒ one straw might be occupied for the next 3 or 4 events and might not fire if hit by a particle!



### STT

Forward/backward asymmetry of distribution might cause spiralling in magnetic field since  $\Lambda$  decays almost at rest and its decay products are not given much energy

Challenges concerning spiralling tracks with many STT hits:

- Might be difficult to reconstruct
- Particles trapped in magnetic field might not reach outer detectors
- Might block tubes for tracks from later events makes later tracks harder to reconstruct

### $p\bar{p} \to \Lambda\bar{\Lambda} \to p\pi^-\bar{p}\pi^+$ , STT hits

Events with final state particle tracks with  $\geq$  50 STT hits

| Kind of track | 1.642 GeV | 7 GeV  | 15 GeV |
|---------------|-----------|--------|--------|
| $\pi^{-}$     | 0.4 %     | 24.5 % | 24.1 % |
| $\pi^+$       | 0.4 %     | 0 %    | 0 %    |
| р             | 0 %       | 0 %    | 0 %    |
| $ar{p}$       | 0 %       | 0 %    | 0 %    |

Normalization: total number of events

- ullet At higher beam momenta,  $\sim$  1/4 of all events contain a spiralling  $\pi^-$
- ⇒ might cause trouble!

# $par{p} ightarrow \Lambdaar{\Lambda} ightarrow p\pi^-ar{p}\pi^+$ , STT hits, 15 GeV

- ullet 60 STT hits from  $\pi^-$
- Spiralling confined to one quarter of the STT



- 256 STT hits from  $\pi^-$
- Spiralling confined to half of the STT



# $p\bar{p} \to \Xi^- \Xi^+ \to \Lambda \pi^- \bar{\Lambda} \pi^+ \to p \pi^- \pi^- \bar{p} \pi^+ \pi^+$



$$p\bar{p} \to \Xi^- \Xi^+ \to \Lambda \pi^- \bar{\Lambda} \pi^+ \to p \pi^- \pi^- \bar{p} \pi^+ \pi^+$$

- 10,000 events
- Beam momentum: 4.6 GeV
- Flat phase space distribution, isotropic
- EvtGen, entire decay chain specified
- Ideal track finder, standard track functor
- Target spectrometer
  - Before bug fix
  - Standard track functor (≥ 4 hits in MVD or ≥ 6 hits in MVD+STT+GEM)
  - Bug: if this track functor was used, all tracks which do not hit forward spectrometer were classified as reconstructible
  - Bug fixed in trunk

$$p\bar{p} \to \Xi^- \Xi^+ \to \Lambda \pi^- \bar{\Lambda} \pi^+ \to p \pi^- \pi^- \bar{p} \pi^+ \pi^+$$

- For events, only hits from final state particles
- ullet Only tracks with  $\geq$  4 STT hits from final state particles

|                                    | 4.6 GeV |
|------------------------------------|---------|
| Number of events                   | 10,000  |
| Events with a MVD hit              | 99.3 %  |
| Events with a SciTil hit           | 77.6 %  |
| Number of of tracks                | 41,750  |
| Tracks with a MVD hit              | 69.0 %  |
| Tracks with a SciTil hit           | 81.3 %  |
| Tracks with a MVD and a SciTil hit | 55.0 %  |
| Tracks with a MVD or a SciTil hit  | 95.3 %  |
|                                    |         |

- More tracks leave SciTil hit than MVD hit
  - Might be due to  $\Lambda$  and  $\bar{\Lambda}$  decaying outside of MVD

# $p\bar{p} \to \Xi^- \Xi^+ \to \Lambda \pi^- \bar{\Lambda} \pi^+ \to p \pi^- \pi^- \bar{p} \pi^+ \pi^+$ , STT hits

| Kind of track          | Events with tracks     | Events with tracks      |
|------------------------|------------------------|-------------------------|
| (final state particle) | with $\geq$ 4 STT hits | with $\geq$ 50 STT hits |
| р                      | 80.4 %                 | 0 %                     |
| $ar{p}$                | 78.8 %                 | 0 %                     |
| First $\pi^-$          | 66.7 %                 | 6.3 %                   |
| Second $\pi^-$         | 62.2 %                 | 6.2 %                   |
| First $\pi^+$          | 67.5 %                 | 6.2 %                   |
| Second $\pi^+$         | 62.0 %                 | 6.3 %                   |
| Normalization: total   | number of events       |                         |

- 6-25 % of all events contain spiralling pions
- ⇒ Might be a cause of concern

### Outlook

- ullet Analyse  $\Xi^-$  events further decaying the particles in Geant4
- Investigate  $\Omega^-$  events
- Thorough investigation of decay vertex positions
- Investigate usefulness of GEM plates
- Investigate performance of STTCellTrackFinder for  $\Lambda$  ,=^ and  $\Omega^-$  events

### Summary

#### $\Lambda\bar{\Lambda}$ events:

- MVD useful for most events and final state particle tracks
- ullet SciTil useful for  $\sim 1/3$  of events and final state particle tracks at lowest beam momentum but not at higher beam momenta
- $\pi^-$  tend to spiral in magnetic field at higher beam momenta many  $\pi^-$  might not reach the SciTil

#### $\Xi^-\Xi^+$ events:

- MVD useful for  $\simeq$ 99 % of events and  $\simeq$ 69 % of final state particle tracks
- $\bullet$  SciTil useful for  ${\simeq}77$  % of events and  ${\simeq}81$  % of final state particle tracks (more than MVD)

# Thank you!

