

# **MVD SPD**



# Status report of the pixel detector readout electronics

Gianni Mazza

PANDA Meeting, June 15th - 19th 2009



### **Performances - 1**



| Parameter          | Current value                        | Other proposal        | Status      |
|--------------------|--------------------------------------|-----------------------|-------------|
| Pixel size         | $100 \ \mu m \times 100 \ \mu m$     |                       | Fixed       |
| Chip active area   | $10 \text{ mm} \times 10 \text{ mm}$ | 11.4 mm × 11.6 mm     | To be fixed |
| dE/dx method       | Time over Threshold                  |                       | Fixed       |
| Max input charge   | 100 fC                               |                       | Fixed       |
| Clock              | 50 MHz                               | 100,125,150 MHz       | To be fixed |
| Time resolution    | 5.77 ns rms @ 50 MHz                 | 2.31 ns rms @ 125 MHz | To be fixed |
| Max event rate     | 12.3 MHz/cm <sup>2</sup>             | Ongoing simulations   | To be fixed |
| Data rate per chip | 615 Mb/s                             | 815 Mb/s              | To be fixed |

#### Gianni Mazza



### **Performances - 2**



| Parameter                 | <b>Current</b> value    | Other proposal          | Status      |
|---------------------------|-------------------------|-------------------------|-------------|
| Analog gain               | 40 mV/fC                |                         | ~ Fixed     |
| ToT gain                  | 180 ns/fC               | 72 ns/fC                | To be fixed |
| Max ToT                   | 18 µs                   | 7.2 μs                  | To be fixed |
| Signal polarity           | Either n or p           |                         | Fixed       |
| Analogue noise            | 0.032 fC (200 e-)       |                         | ~ Fixed     |
| Quantization noise        | 0.032 fC (200 e-)       |                         | ~ Fixed     |
| Sensor<br>leakage current | < 50 nA/pixel           |                         |             |
| Power consumption         | $< 750 \text{ mW/cm}^2$ | $< 500 \text{ mW/cm}^2$ | To be fixed |

#### Gianni Mazza



**Performances - 3** 



| Parameter                                 | Current value                                     | Other proposal | Status          |
|-------------------------------------------|---------------------------------------------------|----------------|-----------------|
| Total Ionizing Dose<br>( PANDA lifetime ) | 10 Mrad                                           |                | To be confirmed |
| Neutron fluence<br>( PANDA lifetime )     | $5 \cdot 10^{14} 1 \text{MeV n}_{EQ}/\text{cm}^2$ |                | To be confirmed |
| LET threshold                             |                                                   |                | To be defined   |
| SEU saturation cross section              |                                                   |                | To be defined   |

Gianni Mazza



### **ToPiX pixel cell**





#### Gianni Mazza

PANDA Meeting, June 15<sup>th</sup> - 19<sup>th</sup> 2009



# **ToPiX prototype**





- Full pixel cell ( analogue + digital )
- Two folded columns with 128 cells
- Two columns with 32 cells
- $5x2 \text{ mm}^2$  die area
- CMOS 0.13 μm LM technology
- Working frequency : 50 MHz
- Dice-based SEU resistant FFs
- Tests :
  - $\rightarrow$  test bench
  - $\rightarrow$  with a sensor and a radiation source
  - $\rightarrow$  TID and SEU





# ToPiX upgrade - 1



- Technology :  $LM \rightarrow DM$ 
  - Reason : DM will become the HEP mainstream
  - LM : 6 (thin) + 2 (thick) metal layers
  - DM : 3 (thin) + 2 (thick) + 3 (RF) metal layers
  - bus width increases by a factor of  $3 \div 4$
  - shared bus among adjacent columns
  - better power routing ( thicker lines )
  - signal routing is critical





### 25 µm

LM option : bus routing on M4 and M6



PANDA Meeting, June 15<sup>th</sup> - 19<sup>th</sup> 2009

#### Gianni Mazza



## **ToPiX upgrade - 2**



### • Working frequency : $50 \text{ MHz} \rightarrow 125 \text{ MHz}$

- Time stamp bin :  $20 \text{ ns} \rightarrow 8 \text{ ns}$
- Column readout :  $40 \text{ ns} \rightarrow 32 \text{ ns}$
- Column drivers and receivers to be redesigned
- New system simulations required

• SEU protection : DICE cells  $\rightarrow$  triple redundancy

- Size increase ( estimated :  $\times 1.5 \div 2$  ) in the digital part of the chip  $\rightarrow$  rescaling of the analog part
- TMR with correction in the configuration register only



### Module





Gianni Mazza

PANDA Meeting, June 15th - 19th 2009



### Module concept - 1



- Modules with different size required (2,4,5 and 6 F/E chips)
- Up to four 250 Mb/s serial links between ToPiX and module controller.
- 2 or 3 ToPiX chips per module controller
- Module controller to service board : up to  $3 \times 1$  Gb/s electrical links ( $f_{CK} \times 8 \rightarrow PLL$  needed)
- Module controllers can be chained
- Up to 6 F/E ASICs per service board
- Service board to counting room : 3.2 Gb/s optical link

Gianni Mazza



### Module concept - 2



- The module controller functions :
  - $\rightarrow$  Data concentrator
  - $\rightarrow$  Cable reduction
  - → Interface between ToPiX and the non-custom circuits
- Service board size and position to be fixed
  - $\rightarrow$  influences on power and signal traces
- Connector position
- Worst nightmare : cable routing

### **GBT** Chipset

#### 🍓 Radiation tolerant chipset:

- GBTIA: Transimpedance optical receiver
- GBLD: Laser driver
- GBTX: Data and timing and transceiver
- GBT-SCA: Slow control ASIC

#### 🍋 Supports:

- Bidirectional data transmission
- Bandwidth:
  - Line rate: 4.8 Gb/s
  - Effective: 3.36 Gb/s

#### 🍽 The target applications are:

- Data readout
- ттс
- Slow control and monitoring links.

#### 🍋 Radiation tolerance:

- Total dose
- Single Event Upsets



### Gianni Mazza



### **GBT** frame



### 2.1 Frame structure



Frame: 1 SLHC Clock Cycle (120 bits, 4.8 Gb/s)

#### H - Header

SC - Slow Control (160 Mb/s)

TTC - Timing Trigger and Control (640 Mb/s)

D - Data (2.56 Gb/s)

EC - Error correction



### Conclusions



- A ToPiX v2 prototype has been designed and tested with good results, but...
- …due to the clock and technology flavour change a major upgrade is required
- The module controller will require relatively high speed serial links → custom design, contacts with sLHC groups with similar developments for building blocks sharing
- Position of the service board to be fixed ideally as close as possible to the module
- Existing (GOL) or under development (GBT) rad-hard transceiver for the electrical – optical connection

Gianni Mazza