

XXIX PANDA Collaboration Meeting, 16 June 2009, Torino

Electronic simulation

Thanushan Kugathasan Panda GE Torino group

INFN Torino Università di Torino, Dipartimento Fisica Sperimentale

To mitigate the threshold dispersion a local 5 bit DAC is added in each pixel, to allow a fine tuning of the threshold on a pixel by pixel basis.

חפס

Compensation system in each pixel

Measure: threshold dispersion

Calibration with 60 KeV γ (Americium source) Standard Floating Zone p-type sensor 300 μm thick, size: 50 μm x 425 μm

- Signal to noise ratio is limited by parasitics capacitance due the external connections
- Bonding pad+wirebonding+protection diodes

- Could the ToT architecture of ToPix be suited for the read-out of the strip detector?
- Advantages:
 - Possible sharing of digital read-out and DAQ
 - Digitization with low power consumption
 - Since we have more area available (100u x 400u)
 we can improve the performances of the ToT stage

Why we can't use ToPix for the strip readout

 The strip sensor has a large capacitance (Cd=20pF) -> Cross Talk

Saturation and cross-talk

• Effect of the input capacitance on the cross talk

Read-Out Architecture

- Current amplifier to decouple the detector from the ToT stage input node
- Current buffer
- Improved ToT stage

Charge Amplifier

- Charge amplifier: standard configuration with pole-zero compensation.
- 30MHz bandwidth, charge gain of 5 and power consumption of 300uW.

Charge Amplifier - Linearity

ToT stage

- Same architecture of Topix 2.0
- Improvements:
 - 25 nA discharging current
 - Larger transistors to reduce the channel to channel ToT variation due to mismatch effects.

Thanushan Kugathasan - XXIX PANDA Collaboration Meeting, 16 June 2009, Torino

13

Why we need a current buffer?

Since the charge amplifier output resistance is low, the ToT stage has to be connected with a current buffer with a high output resistance

Thanushan Kugathasan - XXIX PANDA Collaboration Meeting, 16 June 2009, Torino

panda

Current Buffer: first design

• The current buffer is employed to connect the current amplifier to the ToT stage with a high output resistance

Full chain simulation: Transient noise

Ideal Current Buffer

Qin = 10fC Noise = 8.7mV rms Charge noise 0.25fC (1300 e⁻) Power: 350uW

Actual Current Buffer

Qin = 10fC Noise = 18 mV rms Charge noise 0.51fC (2678 e⁻) Power: 370uW

Conclusions and Outlook

From first simulations no major show stoppers.

Critical issue: coupling between preamplifier and ToT stage (impact on noise and linearity).

Next step: design of an improved current buffer.