Hyperon Spectroscopy Status Report

Jun 8, 2017 | Albrecht Gillitzer, IKP Forschungszentrum Jülich PANDA Collaboration Meeting 17/2, GSI Darmstadt, June 6-9, 2017

ltems

- I. Production of zero-width resonances in FTF & G4
- I. Simulation & analysis of $\bar{p}p \rightarrow \Xi^- \bar{\Xi}^+ \pi^0$
- III. ,Strange' decays / interactions seen in MC truth list

I: How to validate DPM & FTF simulation?

- Macros in .../macro/qa/dpm4 (and .../dpm3)
- Found that macros are useless since they attempt to reconstruct J/ψ and $\psi(2S)$
- Which are the appropriate criteria?
- Idea: try to reconstruct composite particles
 - 10⁵ DPM events;
 - MC Truth primary & secondary particles
 - Combination of two particles coming from same vertex

DPM 4.6 GeV/c $\overline{p}p$ prim. & sec. MC truth 2-body masses

Direct Test of DPM and FTF Generator Output

- 1.0 M events
- 4.6 GeV/c
- Generator output
- Result:
 - DPM does not produce these zero-width states
 - FTF produces the zero-width resonances

Final test with Box Generator Events

- 0.1 M events
- 4.6 GeV/c \bar{p} , then later also 15 GeV/c p
- 1 \overline{p} per event \rightarrow all particles except one are secondary
- θ range: 5° 45°
- φ range: 0° 360°
- build 2-particle invariant mass spectra
- condition: common start point

Box Gen 4.6 GeV/c \overline{p} prim. & sec. MC truth 2-body masses

Box Gen 15 GeV/c p prim. & sec. MC truth 2-body masses

II: Simulation of $\overline{p}p \to \Xi^-\overline{\Xi}^+\pi^0$

- 4.6 GeV/c $\bar{p}p \rightarrow \Xi^- \overline{\Xi}^+ \pi^0$ (PHSP)
- 1.10⁶ events simulated (trunk 29773)
- $\overline{\Xi}^+, \Xi^-$, stable' in EvtGen
- $\Lambda \rightarrow p\pi^- \& \overline{\Lambda} \rightarrow \overline{p}\pi^+ (\sim 40\%)$ analyzed
- focus on reconstruction efficiency and momentum & position resolution
- charged and composite particles: MC truth matched (correct PID, correct mother)
- photons: include neutral candidates whose mother is a photon and whose grandmother is pbarpSystem

Event Statistics

	efficiencies							fi 27000
×10 ³							Mean RMS	22.13 18.91
	ר, #1	: generate	d	#21 : π ₁ ⁺	#35: Λ _{raw}	#5	51: Λ _{raw}	
	#5	: Ξ, Ξ̄: 2 da	lughters	#23 : π ₁ ⁺	#37: Λ _{v.f.}	#5	53: Λ _{v.f.}	
800	#7	$\Xi^- \to \Lambda \pi$	[–] & c.c.	#25: π_1^+	#39: Λ _{m.f.}	#5	55: Λ _{m.f.}	
	#9	: Λ, <u>Λ</u> : 2 da	aughters	#27 : π ₁ ⁺	#43: ⊼ _{raw}	#5	59: $\overline{\Lambda}_{raw}$	
	#1	$\underline{3}: \Lambda \to p\pi$	[–] & c.c.	# 31: π ⁰	#45: ⊼ _{v.f.}	#6	51: $\overline{\Lambda}_{v.f.}$	
600	#1	/:p			#47: ⊼ _{m.f.}	#6	3: $\overline{\Lambda}_{\mathrm{m.f.}}$	
	#1	9: <i>p</i>				#6	57: $\bar{p}p_{raw}$	
400						#6	9: $\bar{p}p_{\rm v.f.}$	
400	Шп	Пп				#7	'1: $\bar{p}p_{4 ext{C.f.}}$	
200				NN NN]	ППг	1	
õ	10	20	30	40	50	60	70	

Reconstruction Efficiencies

reconstruction efficiencies in % :

p	\overline{p}	π^-	π^+	π^0	Λ	$\overline{\Lambda}$	Ξ-	$\overline{\Xi}^+$	$\overline{p}p$
90.8	88.7	78.3	78.3	52.0	59.3	57.3	44.0	42.5	7.8

- note:
 - Ideal tracking, no condition on #hits yet
 - ideal PID
 - MC truth matching (correct mother)
- KinVtxFitter \rightarrow vertex, KinFitter \rightarrow M, 4CFitter \rightarrow initial p4
- composite particles: losses due to mass & probability cut

$\Xi^-\overline{\Xi}^+\pi^0$ Dalitz Plot

 Here: still problem of entries at wrong masses *after* mass and 4C fits (meanwhile solved by Xinying)

III: ,Strange' Decays / Interactions in MC Truth List

 Recent improvement: option to select specific decay modes in Geant4 by using "UserDecayConfig" file (Dominik Steinschaden)

• Set
$$\Lambda \to p\pi^- \& \overline{\Lambda} \to \overline{p}\pi^+$$
 decay modes to 100%

- $\Xi^- \to \Lambda \pi^- \& \overline{\Xi}^+ \to \overline{\Lambda} \pi^+$ is already ~100%
- Expect ~100% $\Lambda \rightarrow p\pi^- \& \overline{\Lambda} \rightarrow \overline{p}\pi^+$ final state
- However: find only 92.4% in this final state
- What happened to the missing events?

Checking the MC Truth List

- Print all decays / interactions with deviations from selected pattern
 - # daughters, pid, \vec{X} , \vec{p}
- Found deviations:
 - all particle species: $\Xi^-, \overline{\Xi}^+, \Lambda, \overline{\Lambda}$
 - Most cases not explainable by interaction with material
 - number of daughters differs from 2: e.g. 1, 3, ... > 10
 - not all daughters have the same start vertex (???)
- Problem either in G4 or in filling of MC list, but further study required

N E daughters N anti-E⁺ daughters hnDaugXim hnDaugXibp 2000 2000 Entries Entries 2.033 Mean 2.019 Mean 10³ 0.371 0.5084 RMS RMS 10³ 10² 10² Ē 10 10 ō 10 12 18 20 10 12 18 20 2 4 6 8 14 16 2 4 6 8 14 16 N Λ daughters N anti- Λ daughters hnDaugLam hnDaugLambar Entries Entries 1911 1911 2.049 0.65 2.039 Mean Mean 0.5272 RMS RMS 10³ 10³ E E 10² 10² E 10 10

2

4

6

8

10

12

14

16

18

20

Event Scan: 'Mysterious' Cases

• $\overline{\Xi}^+ \to e^- \overline{\Lambda} \pi^+$ (many)

- electron added to the decay final state
- different start vertex, always upstream of other particles
- analogous for Ξ^- , $\overline{\Lambda}$, Λ

• $\overline{\Xi}^+ \to \overline{\Lambda}$ (many)

- one single daughter, missing pion
- analogous for Ξ^- , $\overline{\Lambda}$, Λ
- $\Lambda \rightarrow \pi^- \gamma n$ (1); $\Lambda \rightarrow 3p \ 7n \ 2\gamma$ (1)
 - violate Q and S !
 - all daughters have same start vertex
- All others are explainable as interaction with material

Summary

- Zero-width resonances in G4 and FTF
- Preliminary analysis of $\bar{p}p \rightarrow \Xi^- \bar{\Xi}^+ \pi^0$ at 4.6 GeV/c
- Found cases in the MC particle list which are incompatible with ,decays' or ,interactions'

Finding solutions is nicer than finding problems but Finding problems is still better than finding nothing !