Update on Picoamp and Lifetime Measurements

M. Pfaffinger, M. Böhm, A. Lehmann,And the master students:D. Miehling, R. Frytz, S. Stelter

PANDA Meeting Darmstadt, June 07. 2017

NATURWISSENSCHAFTLICHE FAKULTÄT

Picoamp update

NATURWISSENSCHAFTLICHE FAKULTÄT

Motivation

- Lifetime indicator: integrated anode charge (IAC, detected number of photons)
- Huge lifetime increase in the last years (from 200 mC/cm² to >5 C/cm² as PANDA requires)
 - Ifetime measurements take up to several years now
- Wish: accelerate the measurement

Motivation

- MCPs have limited ratestability (IAC not proportional to amount of photons at high photon rates anymore)
- \rightarrow Illumination with higher intensity alone is problematic (plot by M.Yu. Barnyakov and A.V. Mironov, B 2011 JINST 6 C12026) Relative $\lambda = 500 \text{ nm}$
- Idea: additional current measurement at first MCP or photocathode (PC) to correlate Quantum Efficiency (QE) loss and IAC again
- Problem: very low currents (0.5-5 pA) at high potential (2-3kV)
- → Potential-free picoammeter is needed

Rai

700

Pictures of the potential-free picoammeter

PANDA Collab. Meeting Darmstadt – June 07, 2017 - Markus Pfaffinger

Calibration

- First measurements with the picoammeter: calibration
- Generation of small currents with a PiLas Laser and a photodiode
- Calibration with picoammeter 6485 from Keithley

• Very good linearity over 3 orders of magnitude and up to 0.5-1 pA measurable

QE-Scan

- One of the measurements that can be done with the picoammeter is a Quantum Efficiency (QE) scan
- Left picture: Keithley 6485 ; right picture: new one

Quantum Efficiency - Photonis 9001340

QE-Scan

- The figure shows the difference of the two measurements
- Very good agreement between them
- The red and white stripe come from the different positions of the two scans

Quantum Efficiency Difference of Photonis 9001340 (norm - new)

Concerns

- Measurements with MCP-PMTs are only possible at the photocathode (PC) due to finite resistance of the microchannel-plates (unlike standard-dynode PMTs)
- The input operation amplifier is very sensitive and breaks quite easily (at the moment the third one is built in)

Measurements

- But it works: some measurements with a MCP-PMT and a standarddynode PMT on the next slides
- Setup: laser with square diffuser illuminates sensor and a photodiode, a neutral density filter is in front of the sensor
- Measured currents: at the photocathode (with new picoammeter+ multimeter 199 from Keithley), the anode (Keithley 6485) and a reference photodiode (Keithley 6487)

Test measurement with standard-dynode PMT

- Hamamatsu R1450 photomultiplier tube at 1350V (gain of about 650000)
- 48 hours darkness, then illumination with increasing light intensity, then switching laser off

Measurement with standard-dynode PMT

- Hamamatsu R1450 photomultiplier tube at 1350V
- (Almost) linearity in PC vs diode current
- Very good linearity in anode vs diode current
- No gain loss at higher light intensities

PC current vs Diode current

Measurement with MCP-PMT

- Photonis XP85012 9002085 at 1600V (gain of about 600000)
- 6 hours darkness, then increasing light intensity
- Very good linearity between PC current and diode current PC current vs Time

Measurement with MCP-PMT

- with increasing light the anode current is not increasing linearly anymore
- one can plot this as relative gain vs anode current

Measurement with MCP-PMT

 If the data from the current measurement is plotted with the data of the single photon pulse rate stability measurement one can see very good agreement

Picoamp summary

- Possible to measure:
 - QE
 - Rate stability
- Problem:
 - Potential free only up to 2 kV
 - > 2 inch Hamamatsu not measurable (3kV operation voltage)
- New picoamp with up to 4kV isolation in production

Results of latest measurements

NATURWISSENSCHAFTLICHE FAKULTÄT

Data from may 15, 2017 Illumination Overview QE (all sensors with ALD)

Film between MCP Two ALD layers Film in front of first MCP

PANDA Collab. Meeting Darmstadt – June 07, 2017 - Markus Pfaffinger

QE scan of Photonis 9001332 (ALD)

Covered (not illuminated)

QE scan of Photonis 9001393-URD (double ALD)

QE scan of Hamamatsu KT0001 (ALD)

QE scan of Hamamatsu KT0002 (ALD)

QE scan of Hamamatsu JS0022 (8x8, ALD)

Covered (not illuminated)

QE scan of Hamamatsu JS0035 (8x8, ALD) Clear sign of Cathode damage

QE scan of Hamamatsu JS0018 (6x128, ALD) Clear sign of Cathode damage

QE scan of Hamamatsu JS0027 (6x128, ALD)

Covered (not illuminated)

Summary and outlook

- New high QE tube sent back to Photonis
- Double ALD Photonis tube (1393) at 13.6C/cm² without damage
- New Picoamp in production (up to 4kV potential free)
 - Possible to measure Hamamatsu sensors
 - Compare results of both picoamps

GEFORDERT VOM

Bundesministerium für Bildung und Forschung

Thank you for your attention!

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

GEFORDERT VOM

Bundesministerium für Bildung und Forschung

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

NATURWISSENSCHAFTLICHE FAKULTÄT