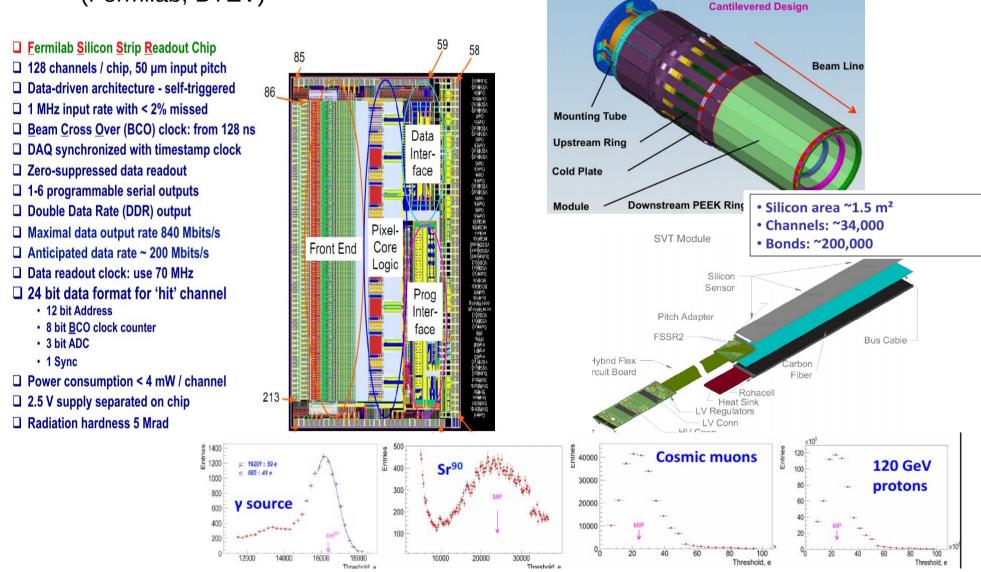
Current status of the strip development

HG Zaunick

JLU Giessen

PANDA CM GSI, June 7, 2017

Activities

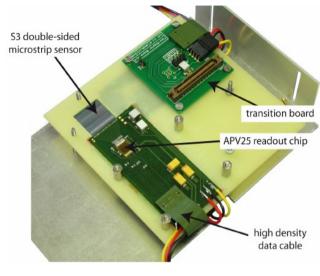

- First batch (barrel #3) of barrel strip sensors deliverd by CiS and QA checked (2015/16)
- Situation of PASTA: First MPW prototype run still under evaluation, chip functional, list of modifications not closed yet
- Request: 1 FTE ASIC engineer for maintenance of PASTA revision 2 (→ Torino)
- Stalled funding situation: Most likely resumed funding from german ministry in 2018 for MVD
- Design of larger flex hybrid prototypes ready, waiting for a "go"
- Cooling concept shown to work (Thesis T. Quagli)

Backup Strategy

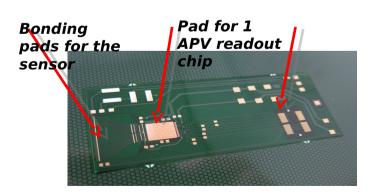
CLAS12 upgrade at JLAB:

• SVT silicon tracker: single sided strip sensors read out with FSSR2 chip

(Fermilab, BTEV)


Readout Hybrids

- Concept of integrated Flex PCB w. pitch adaptor
- Prototype for one APV25 produced and tested ok
- Design for multi FE flex ready since 2016, production on hold due to funding situation


Applied for funding once more for next year

Next step (3 parallel branches)

- Production of single FE flex for PASTA
- Production of multi FE flex for APV25
- Production of single FE flex for FSSR2

Beam Telescope

StripTracking Station:

- \rightarrow sensors 50µm pitch 2x2cm² and S1,S2 PANDA sensors+ APV25 for tracking in up to 4 planes
- → up to 2 DUT boxes for varying assemblies, e.g. prototype sensor modules
- → characterisation of DUT in beam + tracking for spatial resolution studies

MDC

Module Controller for Strip Detector - report as of May 2017:

• manpower: H. Sohlbach app. 5 h per week until end of 2017 plus support from Giessen Group

final goal: VHDL-based FPGA-design ready to be transferred into an digtal ASIC

status: interface for Pasta [1]: design, implementation and functional simulation completed

data buffering and Pasta-style frame handling: design and implementation completed triple-redundancy: design completed, implementation 50%, functional simulation t.b.d.

slow-control: in design, implementation 50%

e-link-ports: t. b. d.

mapping, clustering, hitfinding: in design, implementation 30%

testbench for full mdc design and input data of 11 pasta-chips completed

[1] A. Goerres, Pasta-Digital Interface, private comm. (2013)