Calibration of the Straw Tracker for COSY-TOF PANDA Meeting Torino 2009

June 16, 2009 | <u>Matthias Röder</u>, Jim Ritman, Pierre Voigtländer, Peter Wintz for the COSY-TOF Collaboration

Outline

Introduction to the new COSY-TOF STT

Calibration of the COSY-TOF STT

Conclusions for PANDA STT Calibration

Motivation for new STT in COSY-TOF

- Investigate SU(3) flavour symmetry w/ strangeness physics
- Determine spin-triplet p∧ scattering length to 0.3 fm accuracy
- Measure p∧ invariant mass spectrum in pp→pK∧ with 5 MeV/c² resolution

⇒ Need new Tracker with

- \leq 150 μ m spatial resolution
- factor 2 improvement in pKA reconstruction efficiency

The New Vacuum Straw Tracker

- 2740 drift tubes (ℓ=1m, ⊘=10cm)
- Arranged in 26 layers
- Ar:CO₂ 9:1 at 1.2 bar pressure
- Operated in Vacuum $\leq 5 \cdot 10^{-3}$ mbar
 - \Rightarrow Gas leakage on permeation level
- Single straw performance:
 - 98% efficiency
 - 150 µm resolution
 - To be shown under experiment conditions

Gas Parameters

- COSY-TOF Ar:CO₂ 9:1 with 1600 V anode voltage
 - Purest drift gas
 - Linear space drift time relation

Readout Electronics (by ZEL-FZJ)

TOF

- Discriminator: ASD8
 - 8 channel Amplifier Shaper LE/TE Discriminator
 - Designed for direct straw readout (M. Newcomer, U. Penn)
 - Not operable in vacuum
- Signal feeding
 - Preamplifier in Vacuum (< 3 mW heat loss)
 - 13 m cabling with vacuum feed through
- Acam GPX multihit TDC

PANDA

Dedicated readout (PID interesting)

COSY-TOF beam times with the STT

2008

- 40 hours in August for commissioning
- 12 hours in October for commissioning

2009

2 weeks in May for physics measurement

Sum TDC Spectra for All Channels

little variations in spectrum width/shape of different straws

⇒ common calibration for all straws

Calibration Method

- Assume homogeneous straw illumination
- \Rightarrow constant density: $N/R = \int_0^{t_r} n(t) dt/r(t_r)$

$$\Leftrightarrow r(t_r) = R/(N \cdot \int_0^{t_r} n(t) \, dt)$$

- n(t) spectrum entries at time t
 - N overall number of entries in the spectrum
 - R straw radius,
 - tr drift time,
- $r(t_r)$ track distance

Spectrum Intervals

Calibration Curve

Calibration curve described by a 3rd order polynomial

Comparison with Simulation

Example GARFIELD simulation (red dots):

- agrees with linear shape and max. drift time
- shows broad smearing due to low gas pressure

Spatial Resolution from Simulations

• Single straw mean spatial resolution \approx 220 μ m

To be confirmed with data

Conclusion and Outlook

Conclusion

Common drift time to radius calibration for whole STT done

Next steps

- Iterative improvement of calibration:
 - Tracking with STT
 - Geometrical alignment of all COSY-TOF detectors
 - Refine calibration
- Determine efficiency and resolution

Conclusions for PANDA STT Calibration

- Straw tube operation experience
- COSY-TOF calibration methods adoptable
 - Drift time radius relation
 - Tracking with geometrical alignment

Similarities

- COSY-TOF STT 26 Layers \approx PANDA STT geometry
- Same straw tube geometry (except length)

Deviations

- Driftgas pressure and mixing ratio
- Readout electronics
- COSY-TOF has no magnetic field