Thoughts about the Sensor Options for the PANDA DIRCs

A. Lehmann Universität Erlangen-Nürnberg

- Challenges to photon sensors
 - Barrel DIRC
 - Endcap DIRCs
- Pros and cons of different sensors
- Conclusion

Albert Lehmann

PANDA Collaboration Meeting --- Torino --- June 15-19, 2009

Challenges to Photon Sensors

	Barrel DIRC	Focussing Endcap DIRC	TOP Endcap DIRC
Magnetic Field magnitude [T]	0.5 – 1.0	0.5 – 1.0	1.0 – 1.5
orientation vs PMT axis	?	?	?
Time resolution [ps]	< 100	~300	< 50
Photons after QE per track	?	?	?
Rate [MHz/cm ²]	0.2	1	2
Lifetime [C/cm ² /y] at 10 ⁶ gain	~1	~5	~10

Sensor Candidates

allowing an efficient detection of single photons

- multi-anode photomultiplier tubes (MaPMTs)
- fine-mesh photomultiplier tubes
- hybrid photo diodes (HAPDs)
- Geiger-mode avalanche photo diodes (SiPMs)
- micro-channel plate photomultipliers (MCPs)
- diamond dynode photomultipliers ?

Albert Lehmann

MaPMT

- H6568 (and R7600)
 - used for COMPASS RICH and SciFis
 - operable in fields up to 100 mT (with 3mm shielding)
 - TTS = 400 ps (σ) for single photons (= s.ph.)
 - 36% geometrical efficiency (G.E.); ~20% Q.E.
- R8900
 - rather poor time resolution (TTS \sim 300 ps)
 - ~80% G.E.; super alkali cathode (~30% Q.E.)
 - cross plate anodes (position resolution for s.ph.?)
- H8500
 - fair time resolution (~140 ps for s. ph.)
 - 8x8 pixels and 89% G.E.
 - up to 35% Q.E. with special photo cathode

Albert Lehmann

PANDA Collaboration Meeting --- Torino --- June 15-19, 2009

Fine-Mesh PMT

- usable in magnetic fields up to ~1 T
 - conventional dynodes replaced by 15-19 stages of a very thin grid (~10µm pitch)
 - massive gain drop in high magnetic field
 - hardly usable for s.ph. detection
- no multi-anode tubes available
 - development work of Nagoya group in collaboration with Hamamatsu (L24 for s.ph. detection) was abandoned
- moderate time resolution
 - ~ 100 ps for s.ph. with L24
 - TTS(m.ph.) = 150-200 ps for other tubes

Albert Lehmann

PANDA Collaboration Meeting --- Torino --- June 15-19, 2009

1.5

Н

□ L24 - α

o 124 - 8

L24 - γ

0.4

Relative gain(G/G0) 01 ____ 01 ____

> -3 10

> > 300

200

100

0

TTS σ_{TTS} (ps)

0

 $\Delta \Delta$

Ø

•

0

0.8

B strength (T)

Δ

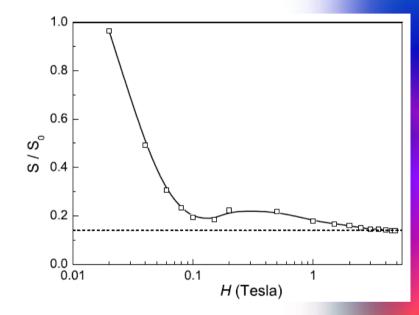
0.5

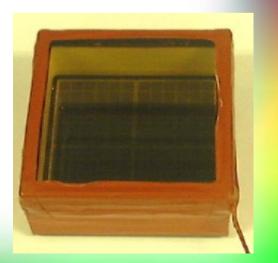
B strength (T)

(d)

1.2

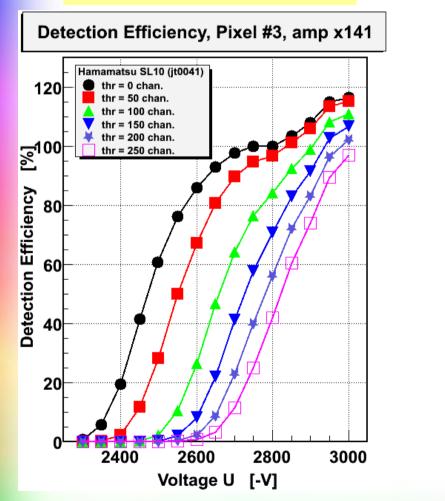
(a)

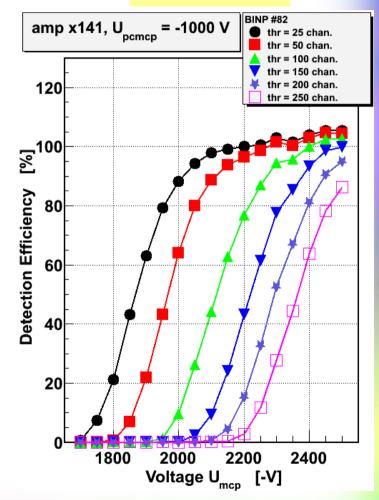

Hybrid photo diode


• Electrostatic focussing HAPD

- 10-20 kHz operation voltage
- field should be homogeneous and parallel to HAPD axis
- problems with G.E. inside B-field
- also problems with ion feedback
 → aging of photo cathode ??

• Proximity focussing HAPD


- Hamamatsu development for Belle
- 144 chan.; effective area ~65%
- what about time resolution? (typical time resolution of HAPD >>100 ps)
- what about p.c. aging?



Detection Efficiency of MCP-PMTs

Hamamatsu SL10

BINP #82

Detection efficiency depends heavily on gain (= HV) !!

Albert Lehmann

PANDA Collaboration Meeting --- Torino --- June 15-19, 2009

Conclusions (Realistic Sensor Options)

• Barrel DIRC

- MaPMTs (if outside magnetic field)
- MCP-PMTs (Burle Planacon with 10µm pore size)
- Focussing Endcap DIRC
 - MCP-PMTs (10µm Burle Planacon or Hamamatsu SL10)
 - Cooled SiPMs
- TOP Endcap DIRC
 - Most likely SiPMs or HAPDs will not give sufficient time resolution (<50 ps) for single photons
 - Diamond dynode PMTs ??
 - MCP-PMTs (SL10 with Al protection layer)

Albert Lehmann