Report on TOF Simulation Studies

Bertram Kopf Institut für Experimentalphysik I Hadronenphysik Ruhr-Universität Bochum

Outline

- Simulations
 - geometry, digitization, reconstruction
- PID Performance
 - Global PID w/ and w/o TOF
- Influence on the EMC
 - single π^0 studies
 - benchmark channels: $\bar{p}p \to \gamma\gamma$ and $\bar{p}p \to \tilde{\eta}_{c1}\eta \to \chi_{c1}\pi^0\pi^0\eta$
- Summary and Outlook

Simulations

- G4 simulations with Physics Book setup
- Geometry of Barrel TOF
 - 1 layer of bars (width: 5 cm, length: 190 cm, inner radius: 38.5cm)
 - between STT and DIRC
 - radiation length: 10% X₀ (default), 20% X₀ (for single π^0 studies)

Simulations

Digitization

- TOF time resolution: 80 ps (Gaussian)
- Start time t_0
 - no start detector
 - relative timing with at least 2 tracks
 - simple assumption: 80 ps resolution for t_0
- Total time resolution for each track: $\sigma_{t_0} = \sqrt{2} \cdot 80 \, ps$

Simulations

Reconstruction

- Reconstructed Mass: $M^2 = M^2(p, l, t)$
 - p = average reconstructed momentum (Kalman)
 - = reconstructed path length (Kalman) 1
 - t = measured time of flight

p = 0.7 GeV/c

30

20

PANDA Collab. Meeting, Torino 06/ 2009

Pid Performance

<u>TOF-PID: K-π- Separation-Power</u>

• Definition from PID-TAG-Report:

track momentum [GeV/c]

PANDA Collab. Meeting, Torino 06/ 2009

Pid Performance

<u>Global PID: K eff. & π misID</u>

- Comparison of PID performance between setup w/o and w/ TOF
 - Detectors contributing to global PID (see Physics Book)
 - w/o TOF: MVD, STT, EMC, (Disk) DIRC, MUON
 - w/ TOF : MVD, STT, EMC, (Disk) DIRC, MUON and TOF
 - realized with standard likelihood method: $p(k) = \frac{\prod_i p_i(k)}{\sum_j \prod_i p_i(j)}$

<u>Single π^0 Studies</u>

(Julian Pychy, RUB)

- Generated particles: single π^0 , 10 MeV 1.5 GeV, $\cos(\theta) = [-0.7, 0.9]$
- Energy and Θ dependent efficiency and background studies

Definition of efficiency and background

- Novosibirsk fit for signal
- Polynomial for background
- $N_{\pi 0}$: entries within 3σ above background
- Background: entries within 3σ below signal

<u>Single π^0 Studies: Efficiency</u>

PANDA Collab. Meeting, Torino 06/ 2009

<u>Single π^0 studies: average efficiency</u>

- 10% X_0 TOF: ~10% efficiency loss
- 20% X_0 TOF: ~20% efficiency loss

<u>Single π^0 studies: average signal/background ratio</u>

- $10\% X_0$ TOF: S/B ratio increased by 20%
- 20% X_0 TOF: S/B ratio increased by 40%

Benchmark channel: $\gamma\gamma$ (Bernhard Roth, RUB)

- Events generated for 4 different \overline{p} mom. ($\sqrt{s} = 2.5, 3.5, 4.0 \& 5.5 \text{ GeV}$)
- G4 simulations w/o and w/ TOF (10% X_0)
- Applied cuts
 - no charged particle
 - γ multiplicity exactly 2
 - 4C fit with $\gamma\gamma$ final state hypothesis
 - requirement: $CL(\gamma\gamma) > 10\%$
 - missing γ -fit with $\pi^0 \gamma$ hypothesis
 - requirement: $CL(\pi^0 \gamma) < 1.3 * CL(\gamma \gamma)$
 - invariant shower mass of the cluster < 130 MeV
 - $0.6 < \cos(\Theta^*) < 0.6$

Benchmark channel: $\gamma\gamma$

- $\sqrt{s} \ll 4$ GeV: S/B ratio decreased by 10%
- $\sqrt{s} = 5.5$ GeV: S/B ratio decreased by 20%

Benchmark channel: $\bar{p}p \to \tilde{\eta}_{c1}\eta \to \chi_{c1}\pi^0\pi^0\eta$

(Marc Pelizäus, RUB)

- Multi γ final state: $e + e 7\gamma$
- G4 simulation w/ and w/o TOF $(10\% X_0)$
- Analysis as described in Physics Book

<u>Results</u>

- Reconstruction efficiency
 - w/o TOF: 7%, w/ TOF: 5.38%
 - 23% less efficiency w/ TOF
- Similar background contamination

Summary

- Global PID: Kaon-Pion separation w/ TOF
 - huge improvement for p < 0.4 GeV/c: 10x less pion contamination
 - slight improvement for p > 0.4GeV/c
- Influence on the EMC
 - single π^0

 \rightarrow efficiency: 10% (20%) less w/ TOF material of 10%X₀ (20%X₀)

 \rightarrow S/B ratio: decrease by 20% (40%) w/ TOF material of 10% X₀ (20%X₀)

$$- \quad \bar{p}p \to \gamma\gamma$$

→ S/B ratio: decreased by 10% for \sqrt{s} <4.5 GeV & by 20% for \sqrt{s} =5.5 GeV

$$- \bar{p}p \to \tilde{\eta}_{c1}\eta \to \chi_{c1}\pi^0\pi^0\eta$$

→ 23% less efficiency w/ TOF

Outlook

- Studies of additional benchmark channels
 - what are relevant channels where Barrel TOF can help?
 - → Kaon identification below 400 MeV/c !

Outlook

- Global PID: not considered so far
 - Kalman fit probability for different particle hypotheses
 - Kaon identification with EMC
 - → afterpulse K⁺ identification
 - K+ identification via π + π decay

PANDA Collab. Meeting, Torino 06/ 2009

Bertram Kopf, Ruhr-Universität Bochum