Proto-60 Beamtime february 2009 @ Mainz with tagged γ 's up to 1.5 GeV

Markus Moritz, W.Döring, P.Drexler, R.Novotny, J.Schneider

II. Physics Institute JLU Giessen

16.6.2009

• • • • • • • •

-∢ ≣ ▶

Outline

Experimental set-up Beamtime procedure Data analysis Outlook

- 2 Beamtime procedure
- 3 Data analysis
 - Calibration
 - Response
 - Multiplicity

< ∃⇒

臣

Proto-60 @ Mainz with Peak Sensing ADC's

イロト イヨト イヨト イヨト

- Accelerator provides tagged $\gamma\,$'s up to 1.5 GeV \implies 15 energies by coincidence with tagger and crystal 35
- Beam in 3 positions

⇒center of crystal 35 ⇒5mm beside center

 \implies between 2 crystals

- Readout adjusted to 200 MeV dynamic range ⇒15db attenuator after preamp crystal 35 ⇒15db attenuator after preamp crystal 36 except beam in center position.
- Pb-sheet before veto \implies simulating barrel DIRC in front of the $\overline{P}ANDA - EMC$ \implies 2mm Pb approximate 30% X_0
- 2 overnight cosmic runs with/without attenuator (crystal 36)

イロト イヨト イヨト イヨト 二日

- Accelerator provides tagged γ 's up to 1.5 GeV \implies 15 energies by coincidence with tagger and crystal 35
- Beam in 3 positions

 \Longrightarrow center of crystal 35

 \Longrightarrow 5mm beside center

 \Longrightarrow between 2 crystals

- Readout adjusted to 200 MeV dynamic range ⇒15db attenuator after preamp crystal 35 ⇒15db attenuator after preamp crystal 36 except beam in center position.
- Pb-sheet before veto \implies simulating barrel DIRC in front of the $\overline{P}ANDA - EMC$ \implies 2mm Pb approximate 30% X_0
- 2 overnight cosmic runs with/without attenuator (crystal 36)

イロト イヨト イヨト イヨト 二日

- Accelerator provides tagged γ 's up to 1.5 GeV \implies 15 energies by coincidence with tagger and crystal 35
- Beam in 3 positions

 \implies center of crystal 35

 \Longrightarrow 5mm beside center

 \Longrightarrow between 2 crystals

- Readout adjusted to 200 MeV dynamic range ⇒15db attenuator after preamp crystal 35 ⇒15db attenuator after preamp crystal 36 except beam in center position.
- Pb-sheet before veto \implies simulating barrel DIRC in front of the $\overline{P}ANDA - EMC$ \implies 2mm Pb approximate 30% X_0
- 2 overnight cosmic runs with/without attenuator (crystal 36)

イロト イヨト イヨト イヨト 二日

- Accelerator provides tagged γ 's up to 1.5 GeV \implies 15 energies by coincidence with tagger and crystal 35
- Beam in 3 positions

 \implies center of crystal 35

 \Longrightarrow 5mm beside center

 \implies between 2 crystals

- Readout adjusted to 200 MeV dynamic range
 - \Longrightarrow 15db attenuator after preamp crystal 35

 $\Longrightarrow\!15\text{db}$ attenuator after preamp crystal 36 except beam in center position.

• Pb-sheet before veto \implies simulating barrel DIRC in front of the $\overline{P}ANDA - EMC$ \implies 2mm Pb approximate 30% X_0

• 2 overnight cosmic runs with/without attenuator (crystal 36)

- Accelerator provides tagged γ 's up to 1.5 GeV \implies 15 energies by coincidence with tagger and crystal 35
- Beam in 3 positions

 \implies center of crystal 35

 \Longrightarrow 5mm beside center

 \Longrightarrow between 2 crystals

- Readout adjusted to 200 MeV dynamic range
 - \implies 15db attenuator after preamp crystal 35

 $\Longrightarrow\!15\text{db}$ attenuator after preamp crystal 36 except beam in center position.

- Pb-sheet before veto \implies simulating barrel DIRC in front of the $\overline{P}ANDA - EMC$ \implies 2mm Pb approximate 30% X_0
- 2 overnight cosmic runs with/without attenuator (crystal 36)

<ロ> <同> <同> < 同> < 同> < 同> < 同> = 同

Calibration Response Multiplicity

Beam in center of crystal 35

Figure: raw data, hardware-trigger on: tagger and 35, or ped, or cosmics

Calibration Response Multiplicity

Crystal 35

Figure: raw-data
Figure: coincidents with tagger

()

Calibration Response Multiplicity

Cosmics crystal 36

Figure: result of a coincident cosmic trigger of all crystals in a row, fittedwith Landau-fkt.

Markus Moritz, Uni-Giessen Proto-60

Calibration Response Multiplicity

ヘロア 人間 アメヨア 人間アー

臣

• PDG 2008: $\frac{dE}{dx} = 10, 2\frac{MeV}{cm}$ $\implies 24,735 MeV$

Calibration Response Multiplicity

・ロト ・四ト ・ヨト ・ヨト

臣

• PDG 2008: $\frac{dE}{dx} = 10, 2\frac{MeV}{cm}$ $\implies 24,735 MeV$

Calibration Response Multiplicity

<ロ> <同> <同> < 同> < 同>

臣

Calibration Response Multiplicity

Pedestal after calibration with cosmics

Calibration Response Multiplicity

Lineshape, threshold 1 *MeV*

・ロト ・回ト ・ヨト ・ヨト

Response Multiplicity

$$f(E) = A \cdot exp\left[-\frac{1}{2}\left(\frac{\log(1+\tau(E-\mu)\frac{\sinh(\tau)}{\sigma\tau\sqrt{\log 4}}}{\tau}\right) + \tau^2\right]$$

- τ describes tail on either
- σ FWHM divided by 2.36
- $\tau \rightarrow 0$ function tends to a

Calibration Response Multiplicity

$$f(E) = A \cdot exp\left[-\frac{1}{2}\left(\frac{\log(1+\tau(E-\mu)\frac{\sinh(\tau)}{\sigma\tau\sqrt{\log 4}}}{\tau}\right) + \tau^2\right]$$

- τ describes tail on either side, positiv: high energy side, negativ:low energy side
- σ FWHM divided by 2.36
- $\tau \rightarrow 0$ function tends to a Gaussian

Calibration Response Multiplicity

$$f(E) = A \cdot exp\left[-\frac{1}{2}\left(\frac{\log(1+\tau(E-\mu)\frac{\sinh(\tau)}{\sigma\tau\sqrt{\log 4}}}{\tau}\right) + \tau^2\right]$$

- τ describes tail on either side, positiv: high energy side, negativ:low energy side
- σ FWHM divided by 2.36
- $\tau \rightarrow 0$ function tends to a Gaussian

Calibration Response Multiplicity

$$f(E) = A \cdot exp\left[-\frac{1}{2}\left(\frac{\log(1+\tau(E-\mu)\frac{\sinh(\tau)}{\sigma\tau\sqrt{\log 4}}}{\tau}\right) + \tau^2\right]$$

- τ describes tail on either side, positiv: high energy side, negativ:low energy side
- σ FWHM divided by 2.36
- $\tau \rightarrow 0$ function tends to a Gaussian

Calibration Response Multiplicity

Linearity test, threshold 1 MeV

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへ()

Calibration Response Multiplicity

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Response Multiplicity

イロト イヨト イヨト イヨト

15

764.7

3.637

417.1

1.237

1600

Response Multiplicity

> proto 60 9 pfx Entries

Mean

RMS

1400

イロト イヨト イヨト イヨト

1600

Mean v

MS v

15

764.7

3.637

417.1

1.237

Response Multiplicity

イロト イヨト イヨト イヨト

Calibration Response Multiplicity

イロト イヨト イヨト イヨト

Calibration Response Multiplicity

Figure: 1058 MeV, TH 0.76 MeV

Markus Moritz, Uni-Giessen Pi

Proto-60

・ロト ・回ト ・ヨト ・ヨト

э

• analyse and compare Geant generated data, provided by Chris Strackbein

Image: A mathematical states and a mathem

∢ ≣ ▶

- position resolution by Daniel Bremer
- chance mounting-design for better cosmic calibration

• analyse and compare Geant generated data, provided by Chris Strackbein

∢ ≣⇒

- position resolution by Daniel Bremer
- chance mounting-design for better cosmic calibration

• analyse and compare Geant generated data, provided by Chris Strackbein

∢ ≣ ▶

- position resolution by Daniel Bremer
- chance mounting-design for better cosmic calibration