

STT Readout Meeting

Peter Wintz (IKP, FZ Jülich)

eZuce | May-15th, 2017

Meeting Agenda

- Welcome
- Minutes Krakow Meeting & Open Points
- Readout Decision Process
 - Organisation/Timelines/Beam Requests
- Criteria & Deliverables for Decision
- Specific Topic: PANDA-DAQ implementation
- Decision Points for Today
- Next Meeting & Points
- Readout Status Updates

- Holger Flemming (PANDA experiment electronics) joined us for the Readout Decision Process
- Michael Kunkel (Postdoc in Juelich, CLAS@JLab) joined STT group
- Pawel Strzempek (JU Krakow) with successfull Ph.D. defense last week
- Alex & Solmaz (KVI Groningen) about to finish Ph.D. by end 2017

Next: Meeting Minutes & Open Points

Krakow Meeting Minutes

- Readout decision process started with Krakow workshop (Jan-30/31)
- Status reports (13) from all groups, discussion of next steps
- Discussed to set up "Decision Panel" to control the process (almost done)
- Timelines of readout decision process presented, aim for decision in Q2-2018
- Started to set up list of criteria & deliverables for the decision (continue today)
- TRB3 readout SODANet implementation presented by Greg K.
- Official note: TRB3 HW suited for phase-1, but not phase-2 (GbE BW limit per TRB3)
- TRB HW upgrade considered as general GSI/FAIR project, multiple interests in community
- PASTTRECv1-ASIC, no design change necessary from 2016 beam tests, 5-50 keV/cm dynamical range covered with no (ToT) saturation seen
- Next ASIC production (PASTTRECv1) submitted (additional phase-0 straw setup, 1600ch)
- PCB FE-boards with slight re-design (reduced size, w/o analog output ch), design in progress
- ADC / op-amp prototype (14 ch) in-beam tested (Dec-2016), time/spatial resolution aims fulfilled, input for pre-series board design (design finished & HW in production in the meantime)

Open Points

Decision points for today:

- Decision process organisation, timelines, test systems & measurements
- DAQ specs for test measurements: (clock) trigger, ch rates, data buffer
- PANDA-DAQ (SODANet) implementation, necessity before RO decision?
- Agreement on readout capabilities / restrictions
 - ASIC/TRB readout: on purpose readout restriction to time, time-over-threshold
 - ASIC with parallel analog signal outputs, only used for prototyping/debugging
 - reason: limited detector front-end area, reduced PCB, power&cooling, #cables
 - ADC-based readout with full waveform sampling
 - only time, pulse area (= charge info) up to now
 - option of additional pulse/waveform data: (i.e. peak ampl., TE-time, BL, NL, ..)
 - implications for readout FPGA / board design, data buffer, bandwidth-limit
- Readout system / cable layout
 - STT front-end cabling RO rack ↔ PANDA installation & STT maintenance
 - one-step installation scheme preferable, cable routing to top-first RO racks

Next: Decision Process Organisation

Decision Process Aims

- Set up "pre-series" systems for both readouts with close to final layout
 - In-beam tests, high signal dynamical range & rates: 2× ~400 ch straw detectors
 - Set up one complete STT sector (700 ch) for ASIC/TRB readout (front-end area)
- Approval of system readiness
 - verify fulfillment of certain criteria & deliverables
 - techn. specs & financials
 - robustness & complexity (maintenance, work load, MP)
- "Pre-series" test of readout system is part of official milestone FAIR-M8
- After decision: enter final production stage, slight re-designs not excluded
- Full integration of the RO system into PANDA: mechanics, DAQ, simulation & analysis
- Test system (straw + RO) available for PANDA-DAQ implementation

"Failure-free" STT readout system mandatory for PANDA running

Decision Process Organisation

- Set up a Decision Panel for process control (done)
 - One person from each involved STT group
 - PANDA-integration aspects: TCs(2), Exp-Electr.(1), STT-Mgr
- Option: in case of ambiguous opinions, add two external experts from ECE panel (STT evaluation)
- Task of decision panel:
 - verify readout system designs & requirements for PANDA-STT
 - define criteria & deliverables for the decision (official document)
 - address open points early (but HW main designs finished)
 - evaluate both systems
 - decide on best-suited readout

Option: external ECE experts
Decision Panel
PANDA TCs
PANDA Electr.
STT Mgr
AGH Kra
JU Kra
IFJ Kra
INFN Fra
KVI Gro
IKP1 Jül
ZEA2 Jül
IFIN Buch PANDA DCS

Timelines for Decision Process

- Jan-17: Start of readout decision process with Krakow meeting
- May-17: process organisation, decision points, status updates, beam requests
- Jun-17: COSY beam meeting (CBAC) in Jülich (beam for ≥ Mar-2018)
- July-17: next eZuce meeting (propose), status updates
- Sep-17: status update of readout systems
- Dec-17: status of cosmic run tests and preps for beam time in Q1-2018
- Q1/Q2-2018: in-beam tests, proton & deuteron beams at COSY
- Q2-2018: reporting on final results
- Q2-2018: decision on final readout system

PANDA-STT system timelines:

- End-2021: PANDA-STT site acceptance test (FAIR-M9), option: COSY tests
- 2022: STT system ready for installation at FAIR
- 2023: system readiness for beam

May-15th, 2017

MP situation very critical, will remain critical, account for in decision process

- Exploit experiences & synergies (same analysis SW, calibration&tracking methods)
- Focus on most important issues
- Workpackage (WP) organisation
- Contact person(s) for each WP
- 3 contributing groups for each system

ASIC/TRB-RO.org

ADC-RO.org

WP Organisation

MP & Financial Resources

- MP calculation needed (FTEs / year) for
 - RO system production & installation, test procedures
 - Recipe for install & tests has to be set up
 - Maintenance: system operation & set-up (roll-in & -out once per year)
- Costbook for pre-series systems to be collected (complete)
 - All components, manufacturing, design works, testing
 - Collection of all production steps
 - List of all involved manufacturers
- Solid calculation of no. of spare components for final system, implement expected/experienced failures (PANDA running time 6 months/year x 10 years)

Testbeam Request

- Proton/deuteron beams at COSY well suited, dE/dx range ~ 5-50 keV/cm, broad/narrow beam spot possible
- Set up beam area and beam tunes in 2016 completed
- 3(4) diff. momenta was set up by COSY per beam week
- Beam intensity / beam profile can be changed by ourselves
- Testbeams proposed for readout decision (plan, to be requested and allocated)
 - 1 week proton beam in Mar-2018 (earliest date)
 - 1 week deuteron beam shortly after (break for beam target source change)
 - 3x diff. momenta for each beam week
- Optional beamtime in 2018 at COSY
 - PANDA-DAQ tests
 - (would prefer after readout decision, takes time to prepare)

Criteria & Deliverables for Decision: Basis

- Readout requirements for PANDA-STT, basis is
 - STT-TDR document
 - Evaluation report from ECE-panel, full TDR approval, recommendations how to proceed with STT
 - Final system prototype/ spare module to conduct a production readiness review
 - Expose electronic chain to full dynamic range of pulse heights by in-beam tests
 - Failure studies!, ..
- New situation: staging of PANDA luminosity
 - Phase-1: reduced lumi with $L \times 1/20$, phase-2 with full lumi L
 - First running years with less intensities and data rates
- Option to have RO staging & upgrade for phase-2 (if cost-effective of course)

Overview: Test Systems & Measurements

- Two straw test systems for both readouts (in progress, straws avail.)
 - each with ~ 400 straws, 16 layers x 24 straws, \geq 24 hits per track (\cong PANDA-STT)
 - full readout chain and all components, ~ 8-12m cabling length front- to back-end
 - in-beam tests, some aging expected, no later use of straws in PANDA
- One complete STT sector in prototype frame (to be done, Q1-2018)
 - ~ 700 straws, final straw modules, mounting techniques & alignment checks
 - front-end electronic area design & cooling for ASIC/TRB system
 - only cosmic tests, straw sector modules can be used later
- Beam tests at COSY
 - Proton/deuteron beams, 0.5 3.0 GeV/c, dE/dx range ~ 5-50 keV/cm
 - High particle rates, signal dynamical range, BL/shaping stability, DAQ tests
- Cosmic data-taking (MIP)
 - Clean tracks, vary track angles (signal propagation time), precise timing
 - Spatial resolution and efficiency determination

Main Criteria for Readout Decision

Signal pulse and pulse shape detection capability

- ASIC properties, LE-/TE-time detection in TRB-FPGA
- Op-amp/ADC props and waveform analysis (FPGA, SW)
- High-rate and high signal dynamical range, hit detection efficiency & resolution
- ~ 400 channels test systems, channel divergence
- Drifttime measurement by signal leading edge time
 - Time resolution, spatial isochrone resolution and radial efficiency
 - Method: r-t isochrone calibration, χ^2 track reconstruction, residuals
 - Final system resolution (mech. system, calibration, SW, tracking, ..)
- Energy-loss measurement by signal pulse shape
 - Pulse width (ASIC/TRB) or pulse area (ADC)
 - Calibration methods, channel divergence (amplifier dispersion)
 - dE/dx separation power, different proton momenta, proton/deuteron at same momentum

Mitglied der Helmholtz-Gemeinschaft

DAQ Criteria

- Bandwidth limit test per readout board
- Time synchronization for multi-boards
- Data buffer, single channel rates, time window with time ordered hits
- **Possible DAQ rates** with straw in-beam tests (particle bunch & bursts at COSY)
 - straw space charge effects limit max. single chan. hit rates: ~ 1.5×10⁴ cm⁻² s⁻¹
 - ~ 1×10⁵ s⁻¹ trigger limit if broad beam (broad spot ~3×3 cm²)
 - ~ $5 \times 10^5 \, \text{s}^{-1}$ max. trigger for short period with space charge effects
- $\sim 4 \times 10^6$ hits/s per readout board (100 straws, 4×10^4 hits/s each straw for clean signals)
- ~ 20 MB/s DAQ (5 Byte data word ?), clean signals
- ~ 100 MB/s DAQ short periods for max. bandwidth test
- Phase-1: 50 / 20 MB/s (max./avg.) per board, can be tested with beam by us without problem
- Phase-2: = Phase-1 × 20

Mitglied der Helmholtz-Gemeinschaft

DAQ Modes & Test Criteria

- 1. Beam trigger (=scintillator): clean timing for straw hits
- Beam trigger + large time window (~2µs): ch multi-hit detection, ~ 350/700 ns COSY extraction time structure
- 3. Record additional reference time channel (beam scintillator) for timing tests, multi-hit detection, ..
- 4. Clock-trigger: ...

1. Cosmic data-taking: long-term stability, clean tracks, rates ~ few Hz

Criteria & Deliverables for Decision

- Which information
- How to compare both systems (some different features)
- Which format ..
- .. Propose to set up specs tables, examples next slides, to be discussed ..

Technical Specifications STT

ltem	Pre-series In-beam	PANDA Phase-1*	PANDA Phase-2	Remarks
No. of straws	~ 400	4224	4224	
Gas mixture, pressure	Ar/C			
Gas gain (default)	5x 10 ⁴			HV=1800V (10% CO2)
Max. drift times	140-200 ns (B=0T)	200-250 ו	Ar/CO2 (20±10%),	
Time resolution (σ)	1 ns			$1ns\cong 50\;\mu m$
Spatial resolution (σ)	< 150 μm 150 μm			
I.P. for MIP	185 I.P./cm			Ar/CO2 @ 2 bar
Charge dynamic range (eff.)	2 – 200 fC			2 fC = single cluster charge @ $5x10^4$ gas gain, 10% eff. signal
dE/dx dynamic range (eff.)	5 – 50 keV/cm			Ar/CO2 @ 2 bar
Max. no. hits / straw	5× 10 ⁴ cm ⁻² s ⁻¹ (space charge limit)	5× 10 ⁴ s ⁻¹	1× 10 ⁶ s ⁻¹	Innermost layer
Avg. no. hits / straw	2× 10 ⁴ cm ⁻² s ⁻¹	2× 10 ⁴ s ⁻¹	4× 10 ⁵ s ⁻¹	all layers
Data rate per channel (max / avg)	250 / 100 kB/s	250 / 100 kB/s	5 / 2 MB/s	for 5 Byte data word
Avg. no. of events	1-2× 10 ⁵ s⁻¹	1× 10 ⁶ s ⁻¹	2× 10 ⁷ s ⁻¹	Pre-series with single beam tracks

*Phase-1 with factor 20 less luminosity than nominal

Tech. Specs: Readout Systems

ltem	ASIC/TRB	ADC-based	Remarks
Readout method	Discriminator with signal leading & trailing edge detection	Waveform sampling and pulse shape analysis	
Time resolution (delta-peak)	1 ns		
Readout boards	TRB3, TDC in FPGA technology, central FPGA	Sampling ADC, central FPGA readout	ADC: HMCAD1520, 12-bit, 160MSPS in quad-ch mode, FPGA: Xilinx Virtex 7
Channels per readout board	192	160	40× ADC(4ch), 1× FPGA
Readout HW	"PASTTREC"-ASIC as amp/shaper/discriminator, TRB3	Custom op-amp, commercial ADC/FPGA	
Special features	Online adjustable gain (1-7 mV/fC), BLs, thresh., shaping parameters	higher ADC sampling in double- /single-ch mode, full wave form	Waveform information, BL determination, leading edge detection, signal area summation
Data word / output information	time _{LE} , time-over-threshold	time _{LE} , signal area	
Optional output			Additional data from ADC? BL, NL, max. amplitude, online monitoring?
Online monitor	Single channel TDC rates		
TDC window/binning (typical)	1 µs / 0.5 ns		
Data buffer (epoque)	500 µs		
Data single word size	5 Byte	???	TRB: ch, time, tot ADC:
Data rate / board at full luminosity	400 MB/s		Inner-/outer layers to one board

May-15th, 2017

Specs: Performance Tests & Results

ltem		ASIC/TRB	ADC-based	Remarks
HW stability	BL, NL, thresh., amp, .			~ 400 ch system
DAQ stability	In-beam / cosmics			
Drifttime measurement	Time resolution (test pulse)			
	Spatial resolution			Cosmics, mip
	Efficiency (radial)			Cosmics, mip
	Sensitivity			Threshold for pulse detection, 55Fe
	Time calibration method			
	Hit efficiency			
	Double-pulse resolution			After-pulse
dE/dx measurement	Covered range (5-50 keV/cm)			Amp/shaping saturation test
	Resolution			pulse width / pulse area
	Calibration method			
	Hit efficiency			
PID / separation power	Diff. proton momenta			
	Proton/deuteron at same momentum			
DAQ operation	Max. readout rate (in-beam)			
	Buffer time window			
	Deadtime / data-loss			

Next: PANDA-DAQ Implementation

.. Open discussion ..

.. PANDA-DAQ TDR & tests

- .. ASIC/TRB3 readout system for PANDA-FT decided (?!)
- .. STT readout system, at first: take decision which system, then available for DAQ tests

Next: Decision Points Today

Decision Points for Today

- Decision process organisation, timelines.. approval
- Test systems & measurements approval
- General system HW approval
- General system layout (front-end cabling RO rack) approval
- Open point: ADC waveform sampling and additional information (SW issue)
- Any other missing points?
- PANDA-DAQ implementation necessary/possible (man power)?
- Readout decision w/ or w/o SODANet / PANDA-DAQ (hardware setup)
- Topics for next meeting, propose meeting date in early July
- Any other topic?

Next: Readout Status Updates

