With LIGHT to highest ion beam intensities and shortest ion beam pulses

D. Jahn1,2, J. Ding1, D. Schumacher1, S. Busold1, C. Brabetz1, A. Blazevic1,2, F. Kroll1, V. Bagnoud1,2 and M. Roth1

1GSI Helmholtzzentrum für Schwerionenforschung, Helmholtz-Institut Jena, 2Technische Universität Darmstadt, 3Helmholtzzentrum Dresden-Rossendorf

TARGET NORMAL SHEATH ACCELERATION (TNSA):
intense ion source: $10^{11} - 10^{13}$ protons in < 1 ps
low emittance: < 0.01 mm mrad transversal, 10^6 eV s longitudinal [4,5]
huge accelerating field gradients: MV/μm

Approximation

- rf power > 200 kV
- 3 gaps
- acceleration voltage ± 1 MV
- 108.4 MHz
- injection into rf at -90° synchronous phase

Simulations on energy compression

Double Spiral Resonator
- rf power > 200 kV
- 3 gaps
- acceleration voltage ± 1 MV
- 108.4 MHz
- injection into rf at -90° synchronous phase

Experimental Results
- measurement with RCF and spectrometer
- ΔE/E = 2.7% ± 1.7%
- $ΔE = 1.7 \times 10^3 ± 15%$

Phase focusing with the rf cavity

Detector for Short Proton Pulses
- pcCVD diamond detector (13 μm thick, 1 mm radial area, impedance matching for fast readout)

Phase focusing of 8 MeV/u Protons
- mean pulse length as a / μs:
 - modulation of a Gaussian pulse profile with detector response function
 - $ΔE/Δt = 6 \times 10^{-3}$ μs pulse length of 50610 μs
 - $I = 1 \times 10^8$, $I = 3000$ μA

Generation and Transport of Heavy Ions successfully demonstrated
- formation of multitude of peaks due to bunching in cavity
- energy gain particle number lower as for protons because of overall lower generation efficiency

References

Outlook

2017
Further improvement of heavy ion beam
improving homogeneity of proton beam (high energy feature)

2018
Reconstruction of the LIGHT experimental area

Contact: d.jahn@gsi.de, j.ding@gsi.de