R3B Status Report

NUSTAR Annual Meeting 2018

Dominic Rossi
R3B Overview

Reactions with Relativistic Radioactive Beams

CALIFA Si Tracker

NeuLAND neutrons

g-rays protons

GLAD

Reactions with Relativistic Radioactive Beams

Coulex, QFS, Transfer rx., Fragmentation, Fission, …

protons light fragments

Tracking Detectors

heavy fragments
R3B Overview

Tracking

L3T Si tracker

ACTAF 2 (1st stage)
CALIFA barrel and fwd start version

- >75% secured
- additional funding expected

CALIFA barrel and fwd start version

NeuLAND
- 13 out of 30 double planes secured
- 3 more expected

NUSTAR-DAQ (TDR accepted 02/2018)
- Time stamps (first implementation)/local trigger logics/readout libraries
- Online analysis R³B-Root ← FAIR-Root

Courtesy of H. Simon
GLAD: Installation in Cave C in 2016
Open issues:

• Current lead foot cooling insufficient *(20171115)*
 ➔ new cl design

• current tests 20180222 with 3.5 kA
 ➔ outcome in agreement with calculations (cl ok !)

• Modification in Satellite foreseen (decision on new cl‘s within next week...)

• GLAD expected to be ready in Q2/2018!
Target Area

Si - Tracker

CALIFA calorimeter

Courtesy of D. Cortina
Liquid Hydrogen Target

- Pure LH$_2$ target for Quasi-Free scattering program at R3B
- 4 cm diameter, 1.5 to 15 cm length
- Granted by French Research Agency (COCOTIER grant, 2017)
- Construction started in Oct. 2017 at CEA/IRFU
- Ready for 2019 campaign at GSI

![Liquid Hydrogen Target Diagram]

Needed for 2019 R3B experiments!
Si Tracker

Two layers of trapezoidal DSSSD with 50 mm stereoscopic strips:

- **Inner layer:**
 - 6 ladders (+ 3 spares) delivered at DL, ~3k strips per ladder, 300mm thick.

- **Outer layer:**
 - 12 ladders (+ 3 spares) delivered at DL, ~4k strips per ladder, 300mm thick.

Readout Electronics + Cables:
- Asics Readout
- All ready to mount 6 inner ladders + 12 outer ladders

(Assembly of 6 inner ladders - 2017)

(Assembly of 2 outer ladders - 2014)

Courtesy of M. Labiche
Si Tracker

Inner layer tests at DL:
• Test with Mixed-Alpha source is ongoing
• Resolution (FWHM) ~150 keV on short strips but a noise issue for longest strips still to be solved!

Outer layer:
• Foreseen to be assembled in March

Both layers to be tested with cosmics in March/April.

+ Still lots of fine tuning to do ….
CALIFA

CALorimeter for In Flight detection of γ-rays and light charged pArticles

Surrounds the R³B target, 7° to 140.3°. The inner volume of CALIFA is designed to fit a vacuum chamber with a Si tracker system and LH target.

- Broad experimental program:
 - Nuclear structure far from stability
 - Fission studies
 - Reactions of astrophysical interest
 - EOS of asymmetric nuclear matter

CALIFA will be the key detector in many of these experiments.

Contributing institutions:

- Chalmers - Gothenburg (SE)
- IEM – Madrid (ES)
- JINR – Dubna (RU)
- Lund University (SE, WG lead)
- TU Darmstadt (DE, dpy WG lead)
- TU Munich (DE)
- USC – Santiago (ES)
- University of Vigo (ES)

Intrinsic PHOSwich detectors

Califa End-cap Phoswich Array

Courtesy of J. Cederkall
CALIFA: Barrel

Start version:

![Start version image](image1)

Full detector:

![Full detector image](image2)

As of January 2018:

<table>
<thead>
<tr>
<th>#</th>
<th>Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>IEM</td>
</tr>
<tr>
<td>250</td>
<td>LU</td>
</tr>
<tr>
<td>360</td>
<td>TUD</td>
</tr>
<tr>
<td>320</td>
<td>USC</td>
</tr>
<tr>
<td>1130</td>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># delivered</th>
<th># tested</th>
<th>Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>480</td>
<td>450</td>
<td>LU</td>
</tr>
<tr>
<td>212</td>
<td>79</td>
<td>TUD</td>
</tr>
<tr>
<td>320</td>
<td>192</td>
<td>USC</td>
</tr>
<tr>
<td>1012</td>
<td>721</td>
<td>Total</td>
</tr>
</tbody>
</table>

Courtesy of J. Cederkall
CALIFA: CEPA and iPhos

Angular cover: 20 – 43 deg.
Nr of crystals: 480
Sectors: 8
Scintillator: CsI(Tl) with PSA

The outer part of five sectors are covered by JINR. Two sectors are covered by TUD and one by USC. This makes iPhos 75% funded as of today.

<table>
<thead>
<tr>
<th>Angular cover:</th>
<th>7 – 20 deg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr of crystals:</td>
<td>2 x 96</td>
</tr>
<tr>
<td>Scintillators:</td>
<td>LaBr/LaCl</td>
</tr>
</tbody>
</table>

Fully funded via Chalmers. First segment module produced.
CALIFA Demonstrator Experiment in Krakow

- $^{16}\text{O}(p,2p)^{15}\text{N}$ with a water target and 200 MeV protons
- Normal kinematics
- Measure γ in coincidence

Target

Silicon detectors

- Petal 0
- Petal 1
- Petal 2

0.46 mm Diameter

Condition on excited state

\[\frac{\Delta E}{E} (\text{FWHM}) = 1.6\% \]

6.3 MeV ($3/2^-$)

SE

Courtesy of R. Gernhäuser / B. Heiss
NeuLAND

Design goals:

- >90% efficiency for 0.2-1.0 GeV neutrons
- multi-hit capability for up to 5 neutrons
- invariant mass resolution down to $\Delta E < 20$ keV at 100 keV above thr.

NeuLAND detector parameters:

- full active detector using RP/BC408
- face size 250x250 cm2
- active depth 300 cm
- 3000 scintillator bars + 6000 PMTs
- 32 tons
- $\sigma_{x,y,z} \approx 1$cm & $\sigma_t < 150$ ps

double plane 11 during bar mounting

Courtesy of K. Boretzky
NeuLAND

NeuLAND Phase 0
Ok Q2-2018
- 130 cm active depth
- 2600 channels
>40% detector

simulation prediction: reconstruction efficiency of the order of 20% for 3 n, 10%
for 4 n (600 MeV, preliminary)

NeuLAND demonstrator back from RIKEN after participation in 9 experiments, incl. studies of light exotic systems (4 n) up to EOS of heavy tin systems

SAT test of in-house developed NeuLAND electronics underway:
- multichannel front-end electronic card TAMEX for high-resolution time and charge measurements

3n, 600 MeV, 100 keV
12dp @ 14m
2DCalibr

Courtesy of K. Boretzky
Status of tracking detectors

Possible tracking detector configurations:

- LOS
- PSP
- FIB
- MUS
- AMS
- DSSSD

Diagram showing possible configurations:

- GLAD
- PAS
- PASTOF
- 1 layer 200 μm
- 1 layer 200 μm
- 1 layer 500 μm
- GFI
- TOFD
Tracking Detectors: LOS

- Scintillator foils read out on rear surface instead of edges
- Better light collection
- Use of thin foils possible
- Better stability

<table>
<thead>
<tr>
<th>Z separation</th>
<th>$\sigma_E < 1%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A separation</td>
<td>$\sigma_t < 10\text{ps}$</td>
</tr>
<tr>
<td>Rate</td>
<td>1 MHz</td>
</tr>
</tbody>
</table>
Tracking Detectors: LOS

Correction of saturation effect of PMTs.
Walk corrections now included.
Correction for light transport ($E = \sqrt{E_1 \cdot E_2}$) does not work).

Achievements with laser for illumination of a point / full detector:

- Time precision of $\sigma_t = 7.1 \text{ ps} / 16 \text{ ps}$
 -> $\sigma_t = 6.8 \text{ ps} / 8.3 \text{ ps}$
- Position precision $\sigma_{xy} = 150 \mu\text{m} / 380 \mu\text{m}$
 -> $\sigma_{xy} = 150 \mu\text{m} / 230 \mu\text{m}$
- Charge precision $\sigma_Q = 0.12 \% / 0.6 \%$
 -> $\sigma_Q = 0.09 \% / 0.1 \%$

Courtesy of M. Heil
Tracking Detectors: PSP X5

- 32-strip (resistive), double-sided Si detector, 10 x 10 cm²
- All strips read out on both ends
- 1x 200um (+1x 200um + 1x 300um) detectors available

<table>
<thead>
<tr>
<th>Z separation</th>
<th>$\sigma_E < 0.5%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position x y</td>
<td>$\sigma_x < 100\mu m$</td>
</tr>
<tr>
<td>Rate</td>
<td>0.1 MHz/strip</td>
</tr>
</tbody>
</table>
Tracking Detectors: Fiber Detectors

• 1 GFI to be refurbished for 2018 experiments: new MAPMT + new read-out electronics (PADI + FPGA-based TDC) (GSI development)

• Various prototypes in construction/test phase:
 • 50x50 cm² 500um round fiber
 • 25x40 cm² 200um square fiber
 • 50x50 cm² 200um round fiber

• Sensors:
 • Hamamatsu H13700 16x16 Multi-Anode PMT
 • SensL 1x1 mm² SiPM
Tracking Detectors: Fiber Detectors

- 500um round FIB: test with 90Sr source
 - Collimated source scanned automatically across detector surface
 - Correlation between fiber and event no.
Tracking Detectors: TOF Wall

- Size: 120 x 100 cm²
- Total of 176 paddles, arranged into 4 layers
- No light guide, PMT R8619 coupled directly to scintillator
- Movable holding structure to sweep TOF wall across beam

<table>
<thead>
<tr>
<th>Z separation</th>
<th>$\sigma_z < 1%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A separation</td>
<td>$\sigma_t < 38\text{ ps}$</td>
</tr>
<tr>
<td>Rate</td>
<td>1 MHz</td>
</tr>
</tbody>
</table>

Courtesy of M. Heil
Proton Arm Spectrometer

- Large area detectors: 2.1 x 1.0 m²
- 2000 straws of 10 mm diameter
- 4 planes, 2 x, 2 -y-oriented.

Read-out
- Front-ends to be produced by PNPI
- Digitizers to be provided by GSI

Funding status:
- In-Kind contract with PNPI ready to be signed
- Sub-contract with GSI for digitizers also ready

The first plane (x) will contain mylar or kapton straws, all others will be thin Al tubes.
PASTOF

- 1 cm thick plastic scintillator, 10 cm wide, arranged in 2 layers
- Use of unused scintillator (initially for LAND) and PMTs
- Will provide trigger for PAS
Active Target

Active Target: Target = Detector

⇒ advantage:
- low threshold
- high detection efficiency (rel. thick target)
⇒ well suited as alternative technique to EXL for:
 - short lifetimes (T ≤ 1 sec)
 - low RIB intensities (≤ 10^5 sec^-1)

Current status:
- TDR passed Council in 12.2017
- FAIR-PNPI In-Kind contract in preparation

Active Target Type 1:
⇒ for (p,p), (α,α'). (³He,t), (d,²He) etc. measurements

Active Target Type 2:
⇒ for (α,α'γ) measurements
 (to be used in coincidence with CALIFA)

- Prototype used in e-p scatt. at MAMI and μ-p scatt. at CERN
- Prototype ready for FAIR phase-0

 Courtesy of P. Egelhof
Data Analysis and Simulation

R3BRoot
Simulations and Data Analysis for R3B

Event display
Visualisation of the detector geometry in simulation. As an option, particles trajectories and hits can also be displayed

https://github.com/R3BRootGroup/R3BRoot.git

R3BRoot is a software framework developed at GSI, used for simulations and data analysis of R3B experiments. It inherits basic framework functionality from FairRoot, extending it with R3B-specific detectors and algorithms implementation. R3BRoot has a modular design with shared libraries, which are loaded on demand. The simulation part is based on the Virtual Monte Carlo (VMC) concept. For the description of detector geometry and input for the simulation, multiple formats are supported. It also includes parameter handling, event display, etc.

Announcements:

Release of R3BRoot apr17

Submitted by kresan on Thu, 04/27/2017 - 09:50

New stable version of R3BRoot is now available: "apr17". The release notes, compatibility issues and a download link can be found on the corresponding GitHub page. Note: master branch was updated as well.

Read more | kresan's blog

Login

Username
hapol
Password

Request new password

Log in

Courtesy of H. Alvarez-Pol
Data Analysis and Simulation

- R3BRoot: ~300,000 total code lines (88,880 lines in implementation files, 65,670 lines in header files, 112,920 total lines in C macros (mainly geo generators), 11,793 lines in txt files, 20,439 lines in root files, ...). Unpacker stage using UCESB + Readers.
- Active development in GitHub, 35 commits since July 2017 by 8 developers.
- Still many automatic procedures for calibration and parameter containers not ready for production. Tests required for software tools.

<table>
<thead>
<tr>
<th></th>
<th>LOS</th>
<th>PSPX</th>
<th>TOFd</th>
<th>NeuLAND</th>
<th>Si Tracker</th>
<th>CALIFA</th>
<th>Straw tubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapped</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mapped - raw data delivered from UCESB to R3BRoot and stored
CAL - calibrated data: time [ns], charge [MeV]
HIT - physical hits, time [ns], charge [MeV], position [cm], all synchronized
Summary

- Minimal R3B setup is expected to be ready for start of FAIR phase-0 in 2018:
 - GLAD: crucial system for R3B operation
 - CALIFA barrel: partially
 - NeuLAND: >10 double-planes
 - Tracking detectors: minimal set of detectors, no redundancy
- Additional systems expected to be ready for 2019:
 - LH2 target
 - Si tracker
- Manpower problems in all R3B Working Groups