MPI AND ALL THAT...

MPITOOLS

JOHAN MESSCHENDPORP, JUNE 2009, PANDPA CM, TURIN

MAIN MOTIVATION

@Learn about the usage of MPI and its possibilities

RESULTED IN ...

@Light-weighted and easy to use generic tool for

“small-scale” job parallelism

@ running on distributed and shared-memory systems
Q@ platform independent

@ running in user-space (no root-access needed)

Q@ no need for additional servers

@ easy scalable

Q@ Application: multi-core machines, HPC facility at
University (not part of PandaGRID)

Q@Usage of High Performance Computing standard:
Message Passing Interface (MPI)

................... s

WHAT IS MPI?

WHAT IS MPI?

Q@ A computing standard which defines higher-level communication and
synchronization methods

WHAT IS MPI?

Q@ A computing standard which defines higher-level communication and
synchronization methods

Q@ Development since 1993 by a group of parallel computer vendors,
computer scientists, and application developers

WHAT IS MPI?

Q@ A computing standard which defines higher-level communication and
synchronization methods

Q@ Development since 1993 by a group of parallel computer vendors,
computer scientists, and application developers

Q Bindings for C, C++, Fortran 77/90/95

WHAT IS MPI?

Q@ A computing standard which defines higher-level communication and
synchronization methods

Q@ Development since 1993 by a group of parallel computer vendors,
computer scientists, and application developers

Q Bindings for C, C++, Fortran 77/90/95

Q@ Available on wide variety of architectures (super comps, clusters, desktop, ...)

WHAT IS MPI?

Q@ A computing standard which defines higher-level communication and
synchronization methods

Q@ Development since 1993 by a group of parallel computer vendors,
computer scientists, and application developers

Q Bindings for C, C++, Fortran 77/90/95
Q@ Available on wide variety of architectures (super comps, clusters, desktop, ...)

Q@ Distributed Memory Paradigm: inter-task communication by message
passing

WHAT IS MPI?

Q@ A computing standard which defines higher-level communication and
synchronization methods

Q@ Development since 1993 by a group of parallel computer vendors,
computer scientists, and application developers

Q Bindings for C, C++, Fortran 77/90/95
Q@ Available on wide variety of architectures (super comps, clusters, desktop, ...)

Q@ Distributed Memory Paradigm: inter-task communication by message
passing

Q@ Several implementations: MPICH(2), LAM, OpenMPI, Vendor MPI

MPI Is SPMD

MPI Is SPMD

@ Parallel programming paradigm -

SPMD=Single Program Multiple Data
Q@ A copy of the same program runs on each processor
Q@ Same code replicated to each process via rsh, ssh, ...

MPI Is SPMD

@ Parallel programming paradigm -

SPMD=Single Program Multiple Data
Q@ A copy of the same program runs on each processor
Q@ Same code replicated to each process via rsh, ssh, ...

my_mpil_program

mpirun -np 6 my_mpi_program

RANK O my mpil program

RANK 1 my mpi program

RANK 2 mMvV_Mmpi_Droeram

RANK 3 my_mpi_program
RANK 4 my mpi program

RANK 5 my_mpi_program

MPI IS ABSTRACT

Q@ The details of the underlying architecture and
communication are completely hidden for the developer

MPI COMM _WORLD

rank=6

size=10

e e e e L .

A TYPICAL MPI SKELETON

#include "mpi.h" // MPTI header file
int main(int argc, char *argv[]) // Your main program
{

int rank, size;

MPI_TInit(&argc, &argv); // Initialize MPI

MPI_Comm_rank(MPI_COMM_WORLD, &rank); // rank = "id" of process
MPI_Comm_size(MPI_COMM_WORLD, &size); // size = number of processes

do_your_work(rank,size); // Your calculation, likely

// rankésize dependent
MPI_Finalize(); // Free up MPI stuff
}

mpicc -o my_mpi_program my_mpi_code.cc l

COMMUNICATION TOOLS

COMMUNICATION TOOLS

Point-to-point communication MPI_Send(...)
MPI_RecV(...)

Process source Process dest

. Buffer I .

COMMUNICATION TOOLS

Point-to-point communication MPI_Send(...)
MPI_RecV(...)

Process source Process dest

. Buffer i .

Collective communication

MPI_Bcast(...) l

MPI_Reduce(...)

Process Processes , Process in
: Process in q
source 1n comm est

comm
Buffer

OP(Buffers)

MPITOOLS

@ MPI-based program to execute in parallel user-defined scripts
@ easy configurable!
Q straight-forward input file for the job description

@ lots of features: job synchronization, splitting, nice level, time-out, transparent log file,
extensive statistics output, ...

@ Boss-Workers Model

Q@ one boss with many workers running on different nodes or cores
Q@ pull model: excellent load balancing
Q@ highly scalable

Q@ Application: infinite IF workers can process or generate data
independently

Q /[pandaroot/trunk/PndTools/mpiTools + panda-wiki.gsi.de

source, example scripts, documentation, and much more

....................

MPITOOLS-IMPLEMENTATION

MPITOOLS-IMPLEMENTATION

jobs description

#

#]OB nrjobs script2call input output pars

b

JOB 10 myscript.sh /input/ /output/ <pars>

MPITOOLS-IMPLEMENTATION

Worker Boss jobs description

#
#]OB nrjobs script2call input output pars

Request a job :
‘ # h JOB 10 myscript.sh /input/ /output/ <pars>

Send job description

‘ (myscript.sh,/input/,/output/,runid, <pars>,

8

copy (cp,ssh or xroot) scripts, /input/ to local scratch

run myscript.sh “runid, <pars>" handle next request(s)
copy (cp, ssh or xroot) to /output/ &

SUIL]

Request a job

__)‘

<

PUTTING THINGS TOGETHER

jobs description

NICE 5
TIMEOUT 3600
SCRATCH /scratch/

RUNID 0
JOB 100 myscript.sh ~/input/ ~/output/ 1000 e- 5.0
BARRIER

RUNID 1000
JOB 1 merge.sh ~/output/ ~/output2/

myjobs.jdl

PUTTING THINGS TOGETHER

Example bash script jobs description
NICE 5
#!/bin/bash TIMEOUT 3600
#$1: run id, $2: #evts, $3: ptype, $4: p PR, U=
% .. RUNID 0
run macros, etc... {Sili{;(i%;nyscript.sh ~/input/ ~/output/ 1000 e- 5.0
#
root -1 -b -q ”mymacro.C($1, $2’ $3’ $4)” ?C%l\llnr)nerge?}??«/ output/ ~/output2/
) myjobs.jdl
if [-z “$error” | ; then
exit 0
fi
exit -1

myscript.sh

PUTTING THINGS TOGETHER

Example bash script

jobs description

#!/bin/bash

#$1: run id, $2: #evts, $3: ptype, $4: p
¥ ..

run macros, etc...

#

root -1 -b -q “mymacro.C($1,%$2,%$3,54)”

if [-z “$error” | ; then
exit 0

fi

exit -1

NICE 5
TIMEOUT 3600
SCRATCH /scratch/

RUNID 0
JOB 100 myscript.sh ~/input/ ~/output/ 1000 e- 5.0
BARRIER

RUNID 1000

JOB 1 merge.sh ~/output/ ~/output2/

myjobs.jdl : .
list of machines

kvit14.kvi.nl
kvitl5.kvi.nl
kvitl6.kvi.nl
kvip81.kvi.nl

myscript.sh

mynodes.list

PUTTING THINGS TOGETHER

Example bash script jobs description
NICE 5

#!/bin/bash TIMEOUT 3600

#$1: run id, $2: #evts, $3: ptype, $4: p PR, U=

¥ .. RUNID 0

run macros, otc... %i]i{;(i%lr{nyscript.sh ~/input/ ~/output/ 1000 e- 5.0

#

RUNID 1000
JOB 1 merge.sh ~/output/ ~/output2/

root -1 -b -q “mymacro.C($1,$2,$3,%4)”

myjobs.jdl
if [-z “$error” | ; then list of machines
exit 0 kvitl4.kvinl
ﬁ kvitl5.kvi.nl
_ kvitl6.kvi.nl
exit -1 kvip81.kvi.nl

, mynodes.list
myscript.sh .
execution

mpirun -np 17 -machinefile mynodes.list boss_worker_mpi -j myjobs.jdl

A BENCHMARK EXAMPLE...

Panda EMC :40 jobs, 500 photon events per job@1 GeV /¢

—10? T T T : S e = |

£ F

E L

=~ L

E +

s L

.

Q -

s
10— -
) ~1/#workers -
: observed i
1 lllll 1 1 1 llllll 1 1

1 10

#workers

qsub run_emc_mpi.job -1 nodes=1,2,4,5,10:ppn=1,2

SUMMARY

@Parallelism using MPI
Q@ high-level tool suited for many HPC infrastructures
Q@ in HEP not well known, although some activities in Geant4 are ongoing
@ MPI is relatively easy to learn

Q@“Play” project: mpiTools
@ very easy to use generic tool for job parallelisation
@ only depends upon MP], trivially installed
Q@ more people interested? include in external packages?
@ does not replace central PandaGRID (which is much more advanced)!!!
Q@ does not provide interactive parallelisation, such as PROOF

S s . - -— R R B

