
MPI AND ALL THAT...
-

MPITOOLS

JOHAN MESSCHENDORP, JUNE 2009, PANDA CM, TURIN

Main Motivation

Learn about the usage of MPI and its possibilities

Resulted in ...
Light-weighted and easy to use generic tool for
“small-scale” job parallelism

running on distributed and shared-memory systems
platform independent
running in user-space (no root-access needed)
no need for additional servers
easy scalable

Application: multi-core machines, HPC facility at
University (not part of PandaGRID)

Usage of High Performance Computing standard:
Message Passing Interface (MPI)

What is MPI?

What is MPI?
A computing standard which defines higher-level communication and
synchronization methods

What is MPI?
A computing standard which defines higher-level communication and
synchronization methods

Development since 1993 by a group of parallel computer vendors,
computer scientists, and application developers

What is MPI?
A computing standard which defines higher-level communication and
synchronization methods

Development since 1993 by a group of parallel computer vendors,
computer scientists, and application developers

Bindings for C, C++, Fortran 77/90/95

What is MPI?
A computing standard which defines higher-level communication and
synchronization methods

Development since 1993 by a group of parallel computer vendors,
computer scientists, and application developers

Bindings for C, C++, Fortran 77/90/95

Available on wide variety of architectures (super comps, clusters, desktop, ...)

What is MPI?
A computing standard which defines higher-level communication and
synchronization methods

Development since 1993 by a group of parallel computer vendors,
computer scientists, and application developers

Bindings for C, C++, Fortran 77/90/95

Available on wide variety of architectures (super comps, clusters, desktop, ...)

Distributed Memory Paradigm: inter-task communication by message
passing

What is MPI?
A computing standard which defines higher-level communication and
synchronization methods

Development since 1993 by a group of parallel computer vendors,
computer scientists, and application developers

Bindings for C, C++, Fortran 77/90/95

Available on wide variety of architectures (super comps, clusters, desktop, ...)

Distributed Memory Paradigm: inter-task communication by message
passing

Several implementations: MPICH(2), LAM, OpenMPI, Vendor MPI

MPI is SPMD

MPI is SPMD
Parallel programming paradigm -
SPMD=Single Program Multiple Data
A copy of the same program runs on each processor
Same code replicated to each process via rsh, ssh, ...

MPI is SPMD
Parallel programming paradigm -
SPMD=Single Program Multiple Data
A copy of the same program runs on each processor
Same code replicated to each process via rsh, ssh, ...

my_mpi_program

my_mpi_program
my_mpi_program

my_mpi_program
my_mpi_program

my_mpi_program
my_mpi_program

mpirun -np 6 my_mpi_program

RANK 0
RANK 1

RANK 2
RANK 3

RANK 4
RANK 5

MPI is abstract
The details of the underlying architecture and
communication are completely hidden for the developer

rank=6

size=10

A typical MPI skeleton
#include “mpi.h” // MPI header file

int main(int argc, char *argv[]) // Your main program
{
int rank, size;
MPI_Init(&argc, &argv); // Initialize MPI

MPI_Comm_rank(MPI_COMM_WORLD, &rank); // rank = “id” of process
MPI_Comm_size(MPI_COMM_WORLD, &size); // size = number of processes
....
do_your_work(rank,size); // Your calculation, likely
.... // rank&size dependent
MPI_Finalize(); // Free up MPI stuff
}

mpicc -o my_mpi_program my_mpi_code.cc

Communication Tools

Communication Tools
MPI_Send(...)
MPI_Recv(...)

Point-to-point communication

Buffer

Process source Process dest

Communication Tools
MPI_Send(...)
MPI_Recv(...)

Point-to-point communication

Buffer

Process source Process dest

Collective communication

Buffer

Process
source

Processes
in comm Process in

comm

Process in
dest

OP(Buffers)

MPI_Bcast(...)
MPI_Reduce(...)

mpiTools
MPI-based program to execute in parallel user-defined scripts

easy configurable!
straight-forward input file for the job description
lots of features: job synchronization, splitting, nice level, time-out, transparent log file,
extensive statistics output, ...

Boss-Workers Model
one boss with many workers running on different nodes or cores
pull model: excellent load balancing
highly scalable

Application: infinite IF workers can process or generate data
independently
/pandaroot/trunk/PndTools/mpiTools + panda-wiki.gsi.de
source, example scripts, documentation, and much more

mpiTools-implementation

mpiTools-implementation

#
#JOB nrjobs script2call input output pars
#
JOB 10 myscript.sh /input/ /output/ <pars>
...
...

jobs description

mpiTools-implementation

#
#JOB nrjobs script2call input output pars
#
JOB 10 myscript.sh /input/ /output/ <pars>
...
...

jobs descriptionWorker Boss

Request a job

Request a job

copy (cp,ssh or xroot) scripts, /input/ to local scratch
run myscript.sh “runid, <pars>”
copy (cp, ssh or xroot) to /output/ &

handle next request(s)

Tim
e

Send job description

(myscript.sh,/input/,/output/,runid,<pars>,...)

Putting things together

NICE 5
TIMEOUT 3600
SCRATCH /scratch/

RUNID 0
JOB 100 myscript.sh ~/input/ ~/output/ 1000 e- 5.0
BARRIER

RUNID 1000
JOB 1 merge.sh ~/output/ ~/output2/

jobs description

myjobs.jdl

Putting things together

NICE 5
TIMEOUT 3600
SCRATCH /scratch/

RUNID 0
JOB 100 myscript.sh ~/input/ ~/output/ 1000 e- 5.0
BARRIER

RUNID 1000
JOB 1 merge.sh ~/output/ ~/output2/

jobs description

#!/bin/bash
#$1: run id, $2: #evts, $3: ptype, $4: p
...
run macros, etc...
#
root -l -b -q “mymacro.C($1,$2,$3,$4)”
...
if [-z “$error”] ; then
 exit 0
fi
exit -1

Example bash script

myscript.sh

myjobs.jdl

Putting things together

NICE 5
TIMEOUT 3600
SCRATCH /scratch/

RUNID 0
JOB 100 myscript.sh ~/input/ ~/output/ 1000 e- 5.0
BARRIER

RUNID 1000
JOB 1 merge.sh ~/output/ ~/output2/

jobs description

#!/bin/bash
#$1: run id, $2: #evts, $3: ptype, $4: p
...
run macros, etc...
#
root -l -b -q “mymacro.C($1,$2,$3,$4)”
...
if [-z “$error”] ; then
 exit 0
fi
exit -1

Example bash script

myscript.sh

myjobs.jdl

kvit14.kvi.nl
kvit15.kvi.nl
kvit16.kvi.nl
kvip81.kvi.nl

list of machines

mynodes.list

Putting things together

NICE 5
TIMEOUT 3600
SCRATCH /scratch/

RUNID 0
JOB 100 myscript.sh ~/input/ ~/output/ 1000 e- 5.0
BARRIER

RUNID 1000
JOB 1 merge.sh ~/output/ ~/output2/

jobs description

#!/bin/bash
#$1: run id, $2: #evts, $3: ptype, $4: p
...
run macros, etc...
#
root -l -b -q “mymacro.C($1,$2,$3,$4)”
...
if [-z “$error”] ; then
 exit 0
fi
exit -1

Example bash script

myscript.sh

myjobs.jdl

kvit14.kvi.nl
kvit15.kvi.nl
kvit16.kvi.nl
kvip81.kvi.nl

list of machines

mynodes.list

mpirun -np 17 -machinefile mynodes.list boss_worker_mpi -j myjobs.jdl

execution

A benchmark example...

~1/#workers
observed

qsub run_emc_mpi.job -l nodes=1,2,4,5,10:ppn=1,2

Panda EMC :40 jobs, 500 photon events per job@1 GeV/c

200 nodes, 2 Opteron CPUs,
1 or 4 GB memory, 64 GB scratch

Summary

Parallelism using MPI
high-level tool suited for many HPC infrastructures
in HEP not well known, although some activities in Geant4 are ongoing
MPI is relatively easy to learn

“Play” project: mpiTools
very easy to use generic tool for job parallelisation
only depends upon MPI, trivially installed
more people interested? include in external packages?
does not replace central PandaGRID (which is much more advanced)!!!
does not provide interactive parallelisation, such as PROOF

