Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

Status of the TPC Simulation

Felix Böhmer

Physik Department E18 Technische Universität München

$\overline{\mathrm{P}}\mathrm{ANDA}$ collaboration meeting Torino, June 2009

Update on TPC Momentum Resolution

Correction of Drift Distortions 00000 000000000 Conclusion & Outlook

Outline

- 1. Improvements on tracking / genfit
- 2. Update on TPC momentum resolution status
- 3. Update on Space-Charge studies and correction

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

Improved Track-Fitting

Tracking O● Update on TPC Momentum Resolution

Correction of Drift Distortions 00000 000000000 Conclusion & Outlook

General Improvements of Track-Fitting

- Genfit has been cleaned up & improved since March 09'
- Floating Point Exceptions in GEANE's Fortran code have been identified
- These problems have been fixed and will be in the next official **VMC** release (special thanks to L. Lavezzi)

Genfit in combination with GEANE track follower is a stable global track-fitter for $\overline{\rm P}{\rm ANDA}$

Plenary talk C. Höppner, Wednesday 14:30 Long wrightup on genfit available on the PANDA wiki

Update on TPC Momentum Resolution $\bigcirc \bigcirc \bigcirc$

Correction of Drift Distortions

Conclusion & Outlook

Update on TPC Momentum Resolution Studies

Correction of Drift Distortions

Conclusion & Outlook

Reminder: Data Features

Data (MC and DIGI) still the same as 3 months ago:

- GEANT3 "ALICE" MC model
- 5000 pion (π^+) tracks for each (momentum, angle) bin
- Tracks uniformly distributed in azimuth ϕ
- Full Digitization
- Reconstruction using genfit (GEANE trackrep)
- TPC HITS ONLY

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

Status of March

• Preliminary results shown at last collaboration meeting:

TPC Momentum Resolution (5k pions each bin)

• Some combinations (momentum, angle) had persistent problems

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

Status of March

• Preliminary results shown at last collaboration meeting:

TPC Momentum Resolution (5k pions each bin)

• Some combinations (momentum, angle) had persistent problems

Update on TPC Momentum Resolution $\bigcirc \bigcirc \bigcirc$

Correction of Drift Distortions 00000 000000000 Conclusion & Outlook

Current status

• After important fixes in GEANE:

TPC Momentum Resolution: weeks of bugfixing pay off

• Results from automatic fitting, all problems solved

Update on TPC Momentum Resolution

Correction of Drift Distortions 00000 000000000 Conclusion & Outlook

Summary Momentum Resolution

• Consistency check: Expression for curvature error (PDG book)

$$\delta k_{res} = rac{arepsilon}{L^2} \sqrt{rac{720}{N+4}}$$

these results correspond to a spatial resolution of $\varepsilon\sim 300\,\mu m$ (N = 35, L \sim 26 cm)

• Possible optimization: FEE, PSA, clustering

Conclusion:

- Tracking using genfit and GEANE working reliably now for millions of events
- All anomalies in momentum resolution studies disappeared
- Results look nice and reasonable
- No drift distortion in this simulation see SC part of this talk!

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

Space-Charge Correction with Lasers

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

General Approach

- 1. Simulate realistic space-charge distribution for the TPC
- 2. Obtain electrical distortion field
- 3. Calculate drift distortions of $e^-\,$
- 4. Apply method of recovery

Conclusion & Outlook

1. Simulation of Space-Charge

- Space-charge ρ is simulated based on DPM generator data
- Assumptions:
 - Azimuthal symmetry
 - Small beam fluctuations

• For each primary ion create **immediately** $\varepsilon = 4$ back-flow ions directly above the GEMs

Correction of Drift Distortions

Conclusion & Outlook

1. Simulation of Space-Charge

- Space-charge ρ is simulated based on DPM generator data
- Assumptions:
 - Azimuthal symmetry
 - Small beam fluctuations

• For each primary ion create **immediately** $\varepsilon = 4$ back-flow ions directly above the GEMs

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

2. Electrical Distortion Field

• The distortion field is calculated using a FEM method (DOLFIN):

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

3. e⁻ Drift Distortions

• Drift distortions (compared to straight lines) of e⁻ are calculated by a 5th order adaptive step-size Runge-Kutta algorithm

Update on TPC Momentum Resolution

Correction of Drift Distortions OOOO● ○○○○○○○○○ Conclusion & Outlook

3. e⁻ Drift Distortions

• Drift distortions (compared to straight lines) of e⁻ are calculated by a 5th order adaptive step-size Runge-Kutta algorithm

• Drift distortions of up to $\mathcal{O}(1 \text{ cm})$ are reached

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

4. Reconstruction Challenge

To correct for drift distortions one needs to measure them; Possibilities:

- 1. Point sources on the back-plane:
 - Would only give the **integrated** drift deviations
- 2. Reconstruction via measured space-charge:
 - Use seen signals to infer space-charge distribution
 - Would not take drift dynamics of the backdrifting ions into account
 → imperfect model of ion space-charge
- 3. Laser system would be able to directly measure drift distortions $\xi(x, y, z)$

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

SC Correction with Lasers -Proof of Principle

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

The Laser Mesh

• We used a simple laser mesh solely based on the requirement of full volume coverage and minimal beam crossings

- Laser beams are modeled through ion density ($\sim 50\,e^-/cm)$ and beam width (gaussian, $\sigma\sim 400\,\mu m)$
- Offline simulation

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

Laser Track Reconstruction

- Simple laser tracking is done based on known geometry
 - No track crossings are resolved
 - ----> Direct measurement of the drift distortions

Example of a reconstructed laser event

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

Fitting & Smoothing

- Raw data f_r ($r = 1 ... n_r$) requires fitting and smoothing
- For this purpose a bi-cubic spline fitting algorithm has been implemented
- Principle:
 - Create mesh λ_i , μ_j of points over the data area ($h \times k$ over the data area + 8 on each side)
 - At each point elementary B-Splines $M_i(x)$, $N_j(y)$ are attached:

• The complete spline has the defined representation

$$s(x,y) = \sum_{i=1}^{h+4} \sum_{j=1}^{k+4} \gamma_{ij} M_i(x) N_j(y)$$

• Fitting problem: Find γ_{ij} that minimize

$$(s(x,y)-f_r)^2$$

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

Fitting & Smoothing II

- This equivalent to minimizing: $\mathbf{A} \gamma = \mathbf{f}$ where \mathbf{A} is the spline-matrix with n_r rows and (h+4)(k+4) columns.
- If the data points are sorted in x(y), the matrix **A** has band structure
- Solve by invertion or Householder Transformations

Example of reconstructed distortion map

- No. of knots: $5 \times 3 \longrightarrow$ higher smoothness, faster fit, lower accuracy
- Fit performance: \sim 15000 data points, fit time $\sim 1\,\text{s}$

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

Fit Quality

- Compare to original input distortion map to get a general understanding of the quality of our reconstruction
- However: Comparison is tricky because of different representations (spline fit vs. lin. interpolated map), # of knots, ...
- Direct comparison yields:

 \longrightarrow Reconstruction uncertainty $\sim O(200 \, \mu m)$ (gauss fit)

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

Correction of Physics Events

- Spline object is very small (only \sim 20 parameters) and fast to evaluate

 \longrightarrow perfectly suited for fast correction

- Correction applied before Kalman Fitter
- Accuracy of prefit (e.g. during pattern recognition) for determining cluster position sufficient
- Results of example studies:

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

Results: Spatial Distortion Correction

- Expected correction precision: $\sim 200\,\mu m$

Black: Ideal case, distortions turned off Red: Distortions present, uncorrected Green: Distortions present, corrected

Update on TPC Momentum Resolution

Correction of Drift Distortions ○○○○ ○○○○○○○ Conclusion & Outlook

Results: Impact on Momentum Reconstruction

- Example sample: 1000 pion tracks ($\pi^+,\,$ 0.5 Gev / c), uniform in θ
- Asymmetric distortion map deforms and shifts momentum peak
- Correction algorithm fully recovers shape and position
- Applying gaussian fits reveals that the error introduced by correction is below 1% for both σ and mean

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook •00

Conclusion & Outlook

Update on TPC Momentum Resolution

Correction of Drift Distortions 00000 000000000 Conclusion & Outlook ○●○

Conclusion

- 1. Track Fitting:
 - Track fitting based on genfit is working reliably
 - Please attend **Christian Höppner's** talk on Wednesday for more information on genfit
- 2. Momentum Resolution Studies
 - Consistent and reasonable results available
 - Momentum resolution of TPC alone: $\sigma_{p}\,/\,p\sim3\%$ @ 1.0 GeV / c
- 3. Space-Charge Correction with Lasers
 - Correction method in place
 - Spatial & momentum resolution fully recovered
 - Effect is under control

Update on TPC Momentum Resolution

Correction of Drift Distortions 00000 000000000 Conclusion & Outlook

Outlook

- 3 dimensional studies for space-charges without azimuthal symmetry
- dE / dx algorithm based on genfit tracking has been implemented \longrightarrow Work in progress

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

Backup Slides

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

Backup slide: TPC geometry

Figure: The two length options and resulting key angles

Update on TPC Momentum Resolution

Correction of Drift Distortions 00000 000000000 Conclusion & Outlook

How does ALICE MC work?

GEANT3 ALICE:

• Sample next step-length \mathcal{L} from from pdf $f(x) = \frac{1}{\lambda} \exp^{(-\frac{x}{\lambda})}$

 $\mathcal{L} = -\lambda ln(r)$ (λ : mean free path, r: random number \in [0,1])

- Force GEANT to make a step there
- $\lambda(p) \propto (\frac{dE}{dx})^{-1}$ from normalized Bethe-Bloch parametrization
- Energy loss straggling directly obtained from a tuned Rutherford cross section

Update on TPC Momentum Resolution

Correction of Drift Distortions 00000 000000000 Conclusion & Outlook

Backup slide: GEANT3 standard TPC hits

Update on TPC Momentum Resolution

Correction of Drift Distortions

Conclusion & Outlook

Backup slide: GEANT3 ALICE TPC hits

