

Update on SciTil hardware development

Sebastian Zimmermann

PANDA Meeting, GSI, 8th March 2017

Attenuation

- Attenuation measured with SiPM pulses
 - Extrapolated to full length board
- Linear loss of 26% of maximum amplitude per meter
- Rise time increases by 0.13 ns per meter

PANDA Meeting GSI, Sebastian Zimmermann, 8th March 2017

Crosstalk

- Using sinusoidal signal •
- SiPM Signal risetime in order of • **1 ns**
 - corresponds to 350 MHz >
 - Approx. 2.5% crosstalk level
- **Crosstalk level higher for** • vertical neighbours
- With a real signal crosstalk only • appears with >1V amplitudes (above expectation)
 - At a approx. -53 dB (0.2 %) level for 1.5 V

Crosstalk

- Using sinusoidal signal
- SiPM Signal risetime in order of 1 ns
 - > corresponds to 350 MHz
 - Approx. 2.5% crosstalk level
- Crosstalk level higher for vertical neighbours
- With a real signal crosstalk only appears with >1V amplitudes (above expectation)
 - At a approx. -53 dB (0.2 %) level for 1.5 V

Railboard Design Update

- Signal shields merged and width reduced
- Potential thickness increase to 35 μm
- Width of area occupied by connections reduced
 - → material budget reduced
 - Previously approx. 2.4% X_0

		0,2 mm 0,36 mm 0,3 mm	
Тор	1	SG1	18 μm Cu
	_	0,29 mm	100 µm FR4
	2	S1 S1	18 µm Cu
	-	0,18 mm	100 µm FR4
	3	SG1&2	18 µm Cu
	4		100 µm FR4
	4	52	18 μm Cu
	5	\$G2&3	E
	6	S3	E
	7	SG3&4	E
	8	S4	2 mm
	9	SG4&5	E I
	10	S5	E
	11	SG5&6	E
	12	S6	E I
	13	SG6&7	E
	14	57 S7	E
	15	SG7	E
Bottom	16	}	
		Screening ground	anal ground

Railboard Design Update

PANDA Meeting GSI, Sebastian Zimmermann, 8th March 2017

SiPM Configuration

- SiPMs will be connected in series or in hybrid^[1] configuration (insert image right)
- Simplifies readout (1 channel for 4 SiPMs)
- Serial connection improves signal rise time
- Hybrid connection can only provide one voltage value to all 4 SiPMs

[1] Inspired by MEGII: arXiv:1301.7225

PANDA Meeting GSI, Sebastian Zimmermann, 8th March 2017

8/10

TOFPET ASIC by PETsys Electronics

number of

Front End Electronics (FEE)

Data will be processed by • the TOF PET ASIC produced by the company PETsys **Flectronics**

SiPM famil on-chip circuit max channe max output Fully digita operation f power per o

number of channels	64	
TDC time binning	50 ps (25 ps optional)	
intrinsic time resolu- tion	21 ps r.m.s.	
charge measurement	time over threshold (ToT)	
dynamic range	$300 \ pC$	
${ m SNR}~({ m Qin}=200~{ m pF})$	25 dB	
coarse gain	G0, G0/2, G0/4	
SiPM familiy support	positive or negative sig- nal polarity	
on-chip calibration circuit	internal pulse genera- tor, programmable 6- bit amplitude	
max channel hit rate	160 kHz	
max output data rate	$\begin{array}{ccc} 320 \hspace{0.2cm} \mathrm{Mb/s} \hspace{0.2cm} (640 \hspace{0.2cm} \mathrm{Mb/s} \\ \mathrm{with} \hspace{0.2cm} \mathrm{double} \hspace{0.2cm} \mathrm{data} \hspace{0.2cm} \mathrm{rate}) \end{array}$	
Fully digital output	2 data LVDS links, DDR compatible	
operation frequency	80-160 MHz	
power per channel	8-11 mW	
SiPM HV fine biasing	range 500 mV	

PANDA Meeting GSI, Sebastian Zimmermann, 8th March 2017

Outlook

- Get the evaluation kit up and running again
- Do first timing measurements to familiarize myself with the ASIC
- Talk to PETsys about custom FEE development
 - We might reuse some commercial components

PANDA Meeting GSI, Sebastian Zimmermann, 8th March 2017